Skip to main content
Log in

Bifunctional plasmonic colloidosome/graphene oxide-based floating membranes for recyclable high-efficiency solar-driven clean water generation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Utilizing plasmonic nano-particles/structures for solar water evaporation has aroused increasing interest; however, large-scale methods are desired to boost the efficiency and improve the practicality of solar steam generation. We developed a membrane-supported floating solar steam generation system based on graphene oxide and a multiscale plasmonic nanostructure; the latter is a micrometer-sized colloidosome that was assembled from hollow and porous Ag/Au nanocubes. By taking advantage of multiscale plasmonic coupling of the particles, an extremely high solar thermal conversion efficiency up to 92% at 10 kW·m−2 (with a water evaporation rate reaching 12.96 kg·m−2·h−1) can be achieved. The TiO2 nanoparticle-modified floating system is also capable of high-efficiency dye degradation in organic-polluted water, rendering such a membrane system recyclable and scalable for practical and versatile solar-driven generation of clean water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bahnemann, D. Photocatalytic water treatment: Solar energy applications. Solar Energy 2004, 77, 445–449.

    Article  Google Scholar 

  2. Green, M. A.; Bremne, S. P. Energy conversion approaches and materials for high-efficiency photovoltaics. Nat. Mater. 2016, 16, 23–34.

    Article  Google Scholar 

  3. Zhou, L.; Tan, Y. L.; Wang, J. Y.; Xu, W. C.; Yuan, Y.; Cai, W. S.; Zhu, S. N.; Zhu, J. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat. Photonics 2016, 10, 393–398.

    Article  Google Scholar 

  4. Zheng, X. Z.; Zhang, L. W. Photonic nanostructures for solar energy conversion. Energ. Envir. Sci. 2016, 9, 2511–2532.

    Article  Google Scholar 

  5. Ghasemi, H.; Ni, G.; Marconnet, A. M.; Loomis, J.; Yerci, S.; Miljkovic, N.; Chen, G. Solar steam generation by heat localization. Nat. Commun. 2014, 5, 4449.

    Article  Google Scholar 

  6. Ni, G.; Li, G.; Boriskina, S. V.; Li, H. X.; Yang, W. L.; Zhang, T. J.; Chen, G. Steam generation under one sun enabled by a floating structure with thermal concentration. Nat. Energy 2016, 1, 16126.

    Article  Google Scholar 

  7. Elimelech, M.; Phillip, W. A. The future of seawater desalination: Energy, technology, and the environment. Science 2011, 333, 712–717.

    Article  Google Scholar 

  8. Liu, Y. M.; Yu, S. T.; Feng, R.; Bernard, A.; Liu, Y.; Zhang, Y.; Duan, H. Z.; Shang, W.; Tao, P.; Song, C. Y.; Deng, T. A bioinspired, reusable, paper-based system for high-performance large-scale evaporation. Adv. Mater. 2015, 27, 2768–2774.

    Article  Google Scholar 

  9. Zhou, L.; Tan, Y. L.; Ji, D. X.; Zhu, B.; Zhang, P.; Xu, J.; Gan, Q. Q.; Yu, Z. F.; Zhu, J. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci. Adv. 2016, 2, 1501227.

    Article  Google Scholar 

  10. Wang, Z. H.; Liu, Y. M.; Tao, P.; Shen, Q. C.; Yi, N.; Zhang, F. Y.; Liu, Q. L.; Song, C. Y.; Zhang, D.; Shang, W. et al. Bio-inspired evaporation through plasmonic film of nanoparticles at the air-water interface. Small 2014, 10, 3234–3239.

    Article  Google Scholar 

  11. Bae, K.; Kang, G. M.; Cho, S. K.; Park, W.; Kim, K.; Padilla, W. J. Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nat. Commun. 2015, 6, 10103.

    Article  Google Scholar 

  12. Ito, Y.; Tanabe, Y.; Han, J. H.; Fujita, T.; Tanigaki, K.; Chen, M. W. Multifunctional porous graphene for high-efficiency steam generation by heat localization. Adv. Mater. 2015, 27, 4302–4307.

    Article  Google Scholar 

  13. Zhang, L. B.; Tang, B.; Wu, J. B.; Li, R. Y.; Wang, P. Hydrophobic light-to-heat conversion membranes with self-healing ability for interfacial solar heating. Adv. Mater. 2015, 27, 4889–4894.

    Article  Google Scholar 

  14. Yu, S. T.; Zhang, Y.; Duan, H. Z.; Liu, Y. M.; Quan, X. J.; Tao, P.; Shang, W.; Wu, J. B.; Song, C. Y.; Deng, T. The impact of surface chemistry on the performance of localized solar-driven evaporation system. Sci. Rep. 2015, 5, 13600.

    Article  Google Scholar 

  15. Ni, G.; Miljkovic, N.; Ghasemi, H.; Huang, X. P.; Boriskina, S. V.; Lin, C. T.; Wang, J. J.; Xu, Y. F.; Rahman, M. M.; Zhang, T. J. et al. Volumetric solar heating of nanofluids for direct vapor generation. Nano Energy 2015, 17, 290–301.

    Article  Google Scholar 

  16. Shi, L.; Wang, Y. C.; Zhang, L. B.; Wang, P. Rational design of a bi-layered reduced graphene oxide film on polystyrene foam for solar-driven interfacial water evaporation. J. Mater. Chem. A 2017, 5, 16212–16219.

    Article  Google Scholar 

  17. Surwade, S. P.; Smirnov, S. N.; Vlassiouk, I. V.; Unocic, R. R.; Veith, G. M.; Dai, S.; Mahurin, S. M. Water desalination using nanoporous single-layer graphene. Nat. Nanotechnol. 2015, 10, 459–464.

    Article  Google Scholar 

  18. Jin, Y. D.; Jia, C. X.; Huang, S. W.; O’Donnell, M.; Gao, X. H. Multifunctional nanoparticles as coupled contrast agents. Nat. Commun. 2010, 1, 41.

    Article  Google Scholar 

  19. Jin, Y. D.; Gao, X. H. Plasmonic fluorescent quantum dots. Nat. Nanotechnol. 2009, 4, 571–576.

    Article  Google Scholar 

  20. Jin, Y. D. Multifunctional compact hybrid Au nanoshells: A new generation of nanoplasmonic probes for biosensing, imaging, and controlled release. Acc. Chem. Res. 2014, 47, 138–148.

    Article  Google Scholar 

  21. Shi, L.; Zhu, L. Y.; Guo, J.; Zhang, L. J.; Shi, Y. N.; Zhang, Y.; Hou, K.; Zheng, Y. L.; Zhu, Y. F.; Lv, J. W. et al. Selfassembly of chiral gold clusters into crystalline nanocubes of exceptional optical activity. Angew. Chem., Int. Ed. 2017, 27, 15397–15401.

    Article  Google Scholar 

  22. Han, B.; Shi, L.; Gao, X. Q.; Guo, J.; Hou, K.; Zheng, Y. L.; Tang, Z. Y. Ultra-stable silica-coated chiral Au-nanorod assemblies: Core–shell nanostructures with enhanced chiroptical properties. Nano Res. 2016, 9, 451–457.

    Article  Google Scholar 

  23. Wang, P. L.; Lin, Z. Y.; Su, X. O.; Tang, Z. Y. Application of Au based nanomaterials in analytical science. Nanotoday 2017, 12, 64–97.

    Article  Google Scholar 

  24. Liu, X.; He, L. C.; Zheng, J. Z.; Guo, J.; Bi, F.; Ma, X.; Zhao, K.; Liu, Y. L.; Song, R.; Tang, Z. Y. Solar-light-driven renewable butanol separation by core–shell Ag@ZIF-8 nanowires. Adv. Mater. 2015, 27, 3273–3277.

    Article  Google Scholar 

  25. Neumann, O.; Urban, A. S.; Day, J.; Lal, S.; Nordlander, P.; Halas, N. J. Solar vapor generation enabled by nanoparticles. ACS Nano 2013, 7, 42–49.

    Article  Google Scholar 

  26. Aydin, K.; Ferry, V. E.; Briggs, R. M.; Atwater, H. A. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat. Commun. 2011, 2, 517.

    Article  Google Scholar 

  27. Xiong, W.; Sikdar, D.; Yap, L. W.; Premaratne, M.; Li, X. Y.; Cheng, W. L. Multilayered core-satellite nanoassemblies with fine-tunable broadband plasmon resonances. Nanoscale 2015, 7, 3445–3452.

    Article  Google Scholar 

  28. Xiong, W.; Sikdar, D.; Walsh, M.; Si, K. J.; Tang, Y.; Chen, Y.; Mazid, R.; Weyland, M.; Rukhlenko, I. D.; Etheridge, J. et al. Single-crystal caged gold nanorods with tunable broadband plasmon resonances. Chem. Commun. 2013, 49, 9630–9632

    Article  Google Scholar 

  29. Lin, J.; Wang, S. J.; Huang, P.; Wang, Z.; Chen, S. H.; Niu, G.; Li, W. W.; He, J.; Cui, D. X.; Lu, G. M. et al. Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy. ACS Nano 2013, 7, 5320–5329.

    Article  Google Scholar 

  30. Huang, P.; Lin, J.; Li, W. W.; Rong, P. F.; Wang, Z.; Wang, S. J.; Wang, X. P.; Sun, X. L.; Aronova, M.; Niu, G. et al. Biodegradable gold nanovesicles with an ultrastrong plasmonic coupling effect for photoacoustic imaging and photothermal therapy. Angew. Chem., Int. Ed. 2013, 125, 14208–14214.

    Article  Google Scholar 

  31. Song, J. B.; Cheng, L.; Liu, A. P.; Yin, J.; Kuang, M.; Duan, H. W. Plasmonic vesicles of amphiphilic gold nanocrystals: Self-assembly and external-stimuli-triggered destruction. J. Am. Chem. Soc. 2011, 133, 10760–10763.

    Article  Google Scholar 

  32. Chen, H. J.; Wang, Y. L.; Dong, S. J. An effective hydrothermal route for the synthesis of multiple PDDA-protected noble-metal nanostructures. Inorg. Chem. 2007, 46, 10587–10593.

    Article  Google Scholar 

  33. He, H. L.; Xu, X. L.; Wu, H. X.; Jin, Y. D. Enzymatic plasmonic engineering of Ag/Au bimetallic nanoshells and their use for sensitive optical glucose sensing. Adv. Mater. 2012, 24, 1736–1740.

    Article  Google Scholar 

  34. Liu, D. L.; Zhou, F.; Li, C. C.; Zhang, T.; Zhang, H. H.; Cai, W. P.; Li, Y. Black gold: Plasmonic colloidosomes with broadband absorption self-assembled from monodispersed gold nanospheres by using a reverse emulsion system. Angew. Chem., Int. Ed. 2015, 54, 9596–9600.

    Article  Google Scholar 

  35. Mao, Z. W.; Xu, H. L.; Wang, D. Y. Molecular mimetic selfassembly of colloidal particles. Adv. Funct. Mater. 2010, 20, 1053–1074.

    Article  Google Scholar 

  36. Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z. Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. Improved synthesis of graphene oxide. ACS Nano 2010, 4, 4806–4814.

    Article  Google Scholar 

  37. Li, X. Q.; Xu, W. C.; Tang, M. Y.; Zhou, L.; Zhu, B.; Zhu, S. N.; Zhu, J. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. Proc. Natl. Acad. Sci. USA 2016, 113, 13953–13958.

    Article  Google Scholar 

  38. Ramasamy, M. S.; Mahapatra, S. S.; Yoo, H. J.; Kim, Y. A.; Cho, J. W. Soluble conducting polymer-functionalized graphene oxide for air-operable actuator fabrication. J. Mater. Chem. A 2014, 2, 4788–4794.

    Article  Google Scholar 

  39. Boukhvalov, D. W.; Katsnelson, M. I. Modeling of graphite oxide. J. Am. Chem. Soc. 2008, 130, 10697–10701.

    Article  Google Scholar 

  40. Jiang, Q. S.; Tian, L. M.; Liu, K. K.; Tadepalli, S.; Raliya, R.; Biswas, P.; Naik, R. R.; Singamaneni, S. Bilayered biofoam for highly efficient solar steam generation. Adv. Mater. 2016, 28, 9400–9407.

    Article  Google Scholar 

  41. Xu, Z. C.; Hou, Y. L.; Sun, S. H. Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties. J. Am. Chem. Soc. 2007, 129, 8698–8699.

    Article  Google Scholar 

  42. Zhang, J. L.; Yang, H. J.; Shen, G. X.; Cheng, P.; Zhang J. Y.; Guo, S. W. Reduction of graphene oxide via L-ascorbic acid. Chem. Commun. 2010, 46, 1112–1114.

    Article  Google Scholar 

  43. Fan, Y. Y.; Ma, W. G.; Han, D. X.; Gan, S. Y.; Dong, X. D.; Niu, L. Convenient recycling of 3D AgX/graphene aerogels (X = Br, Cl) for efficient photocatalytic degradation of water pollutants. Adv. Mater. 2015, 27, 3767–3773.

    Article  Google Scholar 

  44. Tatsuma, T.; Nishi, H.; Ishida, T. Plasmon-induced charge separation: Chemistry and wide applications. Chem. Sci. 2017, 8, 3325–3337.

    Article  Google Scholar 

  45. Du, J.; Qi, J.; Wang, D.; Tang, Z. Y. Facile synthesis of Au@TiO2 core–shell hollow spheres for dye-sensitized solar cells with remarkably improved efficiency. Energy Environ. Sci. 2012, 5, 6914–6918.

    Article  Google Scholar 

  46. Brongersma, M. L.; Halas, N. J.; Nordlander, P. Plasmoninduced hot carrier science and technology. Nat. Nanotechnol. 2015, 10, 25–34.

    Article  Google Scholar 

  47. Lin, D. D.; Wu, H.; Zhang, R.; Pan, W. Enhanced photocatalysis of electrospun Ag-ZnO heterostructured nanofibers. Chem. Mater. 2009, 21, 3479–3484.

    Article  Google Scholar 

  48. Liu, H. R.; Shao, G. X.; Zhao, J. F.; Zhang, Z. X.; Zhang, Y.; Liang, J.; Liu, X. G.; Jia, H. S.; Xu, B. S. Worm-like Ag/ZnO core–shell heterostructural composites: Fabrication, characterization, and photocatalysis. J. Phys. Chem. C 2012, 116, 16182–16190.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21475125 and 21175125), the Hundred Talents Program of the Chinese Academy of Sciences, and the State Key Laboratory of Electroanalytical Chemistry (No. 110000R387).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongdong Jin.

Electronic supplementary material

12274_2017_1959_MOESM1_ESM.pdf

Bifunctional plasmonic colloidosome/graphene oxide-based floating membranes for recyclable high-efficiency solar-driven clean water generation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Zhang, J., Wang, P. et al. Bifunctional plasmonic colloidosome/graphene oxide-based floating membranes for recyclable high-efficiency solar-driven clean water generation. Nano Res. 11, 3854–3863 (2018). https://doi.org/10.1007/s12274-017-1959-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1959-7

Keywords

Navigation