Skip to main content
Log in

Copper nanowire-TiO2-polyacrylate composite electrodes with high conductivity and smoothness for flexible polymer solar cells

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Copper nanowire (Cu NW) transparent electrodes have attracted considerable attention due to their outstanding electrical properties, flexibility and low cost. However, complicated post-treatment techniques are needed to obtain good electrical conductivity, because of the organic residues and oxide layers on the surface of the Cu NWs. In addition, commonly used methods such as thermal annealing and acid treatment often lead to nanowire damage. Herein, a TiO2 sol treatment was introduced to obtain Cu NW transparent electrodes with superb performance (13 Ω/sq @ 82% T) at room temperature within one minute. Polymer solar cells with excellent flexibility were then fabricated on the copper nanowire-TiO2-polyacrylate composite electrode. The power conversion efficiency (PCE) of the cells based on a blend of poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PC61BM) reached 3.11%, which was better than the control devices that used indium tin oxide (ITO)-PET electrodes, and outperforms other Cu NW based organic solar cells previously reported. The PCE of the solar cells based on Cu NW electrodes remained at 90% after 500 cycles of bending, while the PET/ITO solar cells failed after 20 and 200 cycles, with sheet resistance of 35 and 15 Ω/sq, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lucera, L.; Machui, F.; Kubis, P.; Schmidt, H. D.; Adams, J.; Strohm, S.; Ahmad, T.; Forberich, K.; Egelhaaf, H.-J.; Brabec C. J. Highly efficient, large area, roll coated flexible and rigid OPV modules with geometric fill factors up to 98.5% processed with commercially available materials. Energy Environ. Sci. 2016, 9, 89–94.

    Article  Google Scholar 

  2. Tait, J.G.; Merckx, T.; Li, W. Q.; Wong, C.; Gehlhaar, R.; Cheyns, D.; Turbiez, M.; Heremans, P. Blade coating: Determination of solvent systems for blade coating thin film photovoltaics Adv. Funct. Mater. 2015, 25, 3444.

    Article  Google Scholar 

  3. Tait, J.G.; Merckx, T.; Li, W. Q.; Wong, C.; Gehlhaar, R.; Cheyns, D.; Turbiez, M.; Heremans, P. Determination of solvent systems for blade coating thin film photovoltaics. Adv. Funct. Mater. 2015, 25, 3393–3398.

    Article  Google Scholar 

  4. Guo, F.; Kubis, P.; Przybilla, T.; Spiecker, E.; Hollmann, A.; Langner, S.; Forberich, K.; Brabec, C. J. Nanowire interconnects for printed large-area semitransparent organic photovoltaic modules. Adv. Energy Mater. 2015, 5, 1401779.

    Article  Google Scholar 

  5. Nyman, M.; Dahlström, S.; Sandberg, O. J.; Österbacka, R. Unintentional bulk doping of polymer-fullerene blends from a thin interfacial layer of MoO3. Adv. Energy Mater. 2016, 6, 1600670.

    Article  Google Scholar 

  6. Li, S. S.; Ye, L.; Zhao, W. C.; Zhang, S. Q.; Mukherjee, S.; Ade, H.; Hou, J. H. Energy-level modulation of smallmolecule electron acceptors to achieve over 12% efficiency in polymer solar cells. Adv. Mater. 2016, 28, 9423–9429.

    Article  Google Scholar 

  7. Zhong, W.; Chen, L.; Xiao, S. Q.; Huang, L. Q.; Chen, Y. W. A versatile buffer layer for polymer solar cells: Rendering surface potential by regulating dipole. Adv. Funct. Mater. 2015, 25, 3164–3171.

    Article  Google Scholar 

  8. Zhang, K.; Hu, Z. C.; Xu, R. G.; Jiang, X. F.; Yip, H. L.; Huang, F.; Cao, Y. High-performance polymer solar cells with electrostatic layer-by-layer self-assembled conjugated polyelectrolytes as the cathode interlayer. Adv. Mater. 2015, 27, 3607–3613.

    Article  Google Scholar 

  9. Shim, H.-S.; Lin, F.; Kim, J.; Sim, B.; Kim, T. M.; Moon, C. K.; Wang, C. K.; Seo, Y.; Wong, K. T.; Kim, J. J. Efficient vacuum-deposited tandem organic solar cells with fill factors higher than single-junction subcells. Adv. Energy Mater. 2015, 5, 1500228.

    Article  Google Scholar 

  10. Ham, J.; Dong, W. J.; Park, J. Y.; Yoo, C. J.; Lee, I.; Lee, J. L. A challenge beyond bottom cells: Top-illuminated flexible organic solar cells with nanostructured dielectric/metal/polymer (DMP) films. Adv. Mater. 2015, 27, 4027–4033.

    Article  Google Scholar 

  11. Choi, H.; Ko, S. J.; Kim, T.; Morin, P. O.; Walker, B.; Lee, B. H.; Leclerc, M.; Kim, J. Y.; Heeger, A. J. Small-bandgap polymer solar cells with unprecedented short-circuit current density and high fill factor. Adv. Mater. 2015, 27, 3318–3324.

    Article  Google Scholar 

  12. Smith, A. J.; Wang, C.; Guo, D. N.; Sun, C.; Huang, J. X. Repurposing Blu-ray movie discs as quasi-random nanoimprinting templates for photon management. Nat. Commun. 2014, 5, 5517.

    Article  Google Scholar 

  13. Yao, K.; Xin, X. K.; Chueh, C. C.; Chen, K. S.; Xu, Y. X.; Jen, A. K.Y. Enhanced light-harvesting by integrating synergetic microcavity and plasmonic effects for high-performance ITO-free flexible polymer solar cells. Adv. Funct. Mater. 2015, 25, 567–574.

    Article  Google Scholar 

  14. dos Reis Benatto, G.A.; Roth, B.; Corazza, M.; Søndergaard, R. R.; Gevorgyan, S. A.; Jørgensena, M.; Krebs, F. C. Roll-to-roll printed silver nanowires for increased stability of flexible ITO-free organic solar cell modules. Nanoscale 2015, 8, 318–326.

    Article  Google Scholar 

  15. Mao, L.; Chen, Q.; Li, Y. W.; Li, Y.; Cai, J. H.; Su, W. M.; Bai, S.; Jin, Y. Z.; Ma, C. Q.; Cui, Z. et al. Flexible silver grid/PEDOT:PSS hybrid electrodes for large area inverted polymer solar cells. Nano Energy 2014, 10, 259–267.

    Article  Google Scholar 

  16. Kim, S.; Sanyoto, B.; Park, W. T.; Kim, S.; Mandal, S.; Lim, J. C.; Noh, Y. Y.; Kim, J. H. Ultrafiltration: Purification of PEDOT:PSS by ultrafiltration for highly conductive transparent electrode of all-printed organic devices (Adv. Mater. 46/2016). Adv. Mater. 2016, 28, 10106–10106.

    Article  Google Scholar 

  17. Wang, R. R.; Sun, J.; Gao, L.; Zhang, J. Base and acid treatment of SWCNT-RNA transparent conductive films. ACS Nano 2010, 4, 4890–4896.

    Article  Google Scholar 

  18. Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Ri, K. H.; Song, Y. I. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578.

    Article  Google Scholar 

  19. Ning, J.; Hao, L.; Jin, M. H.; Qiu, X. Y.; Shen, Y. D.; Liang, J. X.; Zhang, X. H.; Wang, B.; Li, X. L.; Zhi, L. J. A facile reduction method for roll-to-roll production of high performance graphene-based transparent conductive films. Adv. Mater. 2016, 29, 1605028.

    Article  Google Scholar 

  20. Liang, J. J.; Li, L.; Tong, K.; Ren, Z.; Hu, W.; Niu, X. F.; Chen, Y. S.; Pei, Q. B. Silver nanowire percolation network soldered with graphene oxide at room temperature and its application for fully stretchable polymer light-emitting diodes. ACS Nano 2014, 8, 1590–1600.

    Article  Google Scholar 

  21. Sung, H.; Ahn, N.; Jang, M. S.; Lee, J. K.; Yoon, H.; Park, N. G.; Choi, M. Transparent conductive oxide-free graphenebased perovskite solar cells with over 17% efficiency. Adv. Energy Mater. 2015, 6, 1501873.

    Article  Google Scholar 

  22. Song, M.; You, D. S.; Lim, K.; Park, S.; Jung, S.; Kim, C. S.; Kim, D. H.; Kim, D. G.; Kim, J. K.; Park, J. et al. Highly efficient and bendable organic solar cells with solutionprocessed silver nanowire electrodes. Adv. Funct. Mater. 2013, 23, 4177–4184.

    Article  Google Scholar 

  23. Sachse, C.; Weiß, N.; Gaponik, N.; Mü ller-Meskamp, L.; Eychmüller, A.; Leo, K. ITO-free, small-molecule organic solar cells on spray-coated copper-nanowire-based transparent electrodes. Adv. Energy Mater. 2014, 4, 1300737.

    Article  Google Scholar 

  24. Li, L.; Yu, Z. B.; Hu, W. L.; Chang, C. H.; Chen, Q.; Pei, Q. B. Efficient flexible phosphorescent polymer light-emitting diodes based on silver nanowire-polymer composite electrode. Adv. Mater. 2011, 23, 5563–5567.

    Article  Google Scholar 

  25. Chen, J. Y.; Zhou, W. X. Chen, J.; Fan, Y.; Zhang, Z. Q.; Huang, Z. D.; Feng, X. M.; Mi, B. X.; Ma, Y. W.; Huang, W. Solution-processed copper nanowire flexible transparent electrodes with PEDOT:PSS as binder, protector and oxidelayer scavenger for polymer solar cells. Nano Res. 2015, 8, 1017–1025.

    Article  Google Scholar 

  26. Zhang, D. Q.; Wang, R. R.; Wen, M. C.; Weng, D.; Cui, X.; Sun, J.; Li, H. X.; Lu, Y. F. Synthesis of ultralong copper nanowires for high-performance transparent electrodes. J. Am. Chem. Soc. 2012, 134, 14283–14286.

    Article  Google Scholar 

  27. Zhai, H. T.; Wang, R. R.; Wang, W. Q.; Wang, X.; Cheng, Y.; Shi, L. J.; Liu, Y. Q.; Sun, J. Novel fabrication of copper nanowire/cuprous oxidebased semiconductor-liquid junction solar cells. Nano Res. 2015, 8, 3205–3215.

    Article  Google Scholar 

  28. Cheng, Y.; Wang, R. R.; Sun, J.; Gao, L. A stretchable and highly sensitive graphene-based fiber for sensing tensile strain, bending, and torsion. Adv. Mater. 2015, 27, 7365–7371.

    Article  Google Scholar 

  29. Zhai, H. T.; Wang, R. R.; Wang, X.; Cheng, Y.; Shi, L. J.; Sun, J. Transparent heaters based on highly stable Cu nanowire films. Nano Res. 2016, 9, 3924–3936.

    Article  Google Scholar 

  30. Wang, S. L.; Cheng, Y.; Wang, R. R.; Sun, J.; Gao, L. Highly thermal conductive copper nanowire composites with ultralow loading: Toward applications as thermal interface materials. ACS Appl. Mater. Interfaces 2014, 6, 6481–6486.

    Article  Google Scholar 

  31. Zhou, H.P.; Chen, Q.; Li, G.; Luo, S.; Song, T. B.; Duan, H. S.; Hong, Z. R.; You, J. B.; Liu, Y. S.; Yang, Y. Interface engineering of highly efficient perovskite solar cells. Science 2014, 345, 542–546.

    Article  Google Scholar 

  32. Wang, R. R.; Zhai, H. T.; Wang, T.; Wang, X.; Cheng, Y.; Shi, L. J.; Sun, J. Plasma-induced nanowelding of a copper nanowire network and its application in transparent electrodes and stretchable conductors. Nano Res. 2016, 9, 2138–2148.

    Article  Google Scholar 

  33. Thiel, B. L.; Sarikaya, M. Electron energy loss spectroscopy of copper-oxygen systems at the Cu L-edge. Phys. B: Cond. Matter 1989, 158, 568–571.

    Article  Google Scholar 

  34. Won, Y.; Kim, A.; Lee, D.; Yang, W.; Woo, K.; Jeong, S.; Moon, J. Annealing-free fabrication of highly oxidationresistive copper nanowire composite conductors for photovoltaics. NPG Asia Mater. 2014, 6, e105.

    Article  Google Scholar 

  35. Wang, X.; Wang, R. R.; Zhai, H. T.; Shen, X.; Wang, T.; Shi, L. J.; Yu, R. C.; Sun, J. Room-temperature surface modification of Cu nanowires and their applications in transparent electrodes, SERS-based sensors, and organic solar cells. ACS Appl. Mater. Interfaces 2016, 8, 28831–28837.

    Article  Google Scholar 

  36. Xue, X. X.; Ji, W.; Mao, Z.; Mao, H. J.; Wang, Y.; Wang, X.; Ruan, W. D.; Zhao, B.; Lombardi, J. R. Raman investigation of nanosized TiO2: Effect of crystallite size and quantum confinement. J. Phys. Chem. C 2012, 116, 8792–8797.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 61301036), Shanghai science and Technology Star Project (No. 17QA1404700), Youth Innovation Promotion Association CAS (No. 2014226), Shanghai Key Basic Research Project (No. 16JC1402300), and the Major State Research Development Program of China (No. 2016YFA0203000).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ranran Wang or Jing Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, H., Li, Y., Chen, L. et al. Copper nanowire-TiO2-polyacrylate composite electrodes with high conductivity and smoothness for flexible polymer solar cells. Nano Res. 11, 1895–1904 (2018). https://doi.org/10.1007/s12274-017-1807-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1807-9

Keywords

Navigation