Skip to main content
Log in

Strain modulation on graphene/ZnO nanowire mixed-dimensional van der Waals heterostructure for high-performance photosensor

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The mixed-dimensional van der Waals (vdW) heterostructure is a promising building block for strained electronics and optoelectronics because it avoids the bond fracture and atomic reconstruction under strain. We propose a novel mixed-dimensional vdW heterostructure between two-dimensional graphene and a one-dimensional ZnO nanowire for high-performance photosensing. By utilizing the piezoelectric properties of ZnO, strain modulation was accomplished in the mixed-dimensional vdW heterostructure to optimize the device performance. By combining the ultrahigh electrons transfer speed in graphene and the extremely long life time of holes in ZnO, an outstanding responsivity of 1.87 × 105 A/W was achieved. Under a tensile strain of only 0.44% on the ZnO nanowire, the responsivity was enhanced by 26%. A competitive model was proposed, in which the performance enhancement is due to the efficient promotion of the injection of photogenerated electrons from the ZnO into the graphene caused by the strain-induced positive piezopotential. Our study provides a strain-engineering strategy for controlling the behavior of the photocarriers in the mixed-dimensional vdW heterostructure, which can be also applied to other similar systems in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Britnell, L.; Ribeiro, R. M.; Eckmann, A.; Jalil, R.; Belle, B. D.; Mishchenko, A.; Kim, Y. J.; Gorbachev, R. V.; Georgiou, T.; Morozov, S. V. et al. Strong light-matter interactions in heterostructures of atomically thin films. Science 2013, 340, 1311–1314.

    Article  Google Scholar 

  2. Yu, W. J.; Liu, Y.; Zhou, H. L.; Yin, A. X.; Li, Z.; Huang, Y.; Duan, X. F. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat. Nanotechnol. 2013, 8, 952–958.

    Article  Google Scholar 

  3. Lee, C. H.; Lee, G. H.; van der Zande, A. M.; Chen, W. C.; Li, Y. L.; Han, M. Y.; Cui, X.; Arefe, G.; Nuckolls, C.; Heinz, T. F. et al. Atomically thin p-n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 2014, 9, 676–681.

    Article  Google Scholar 

  4. Hong, X. P.; Kim, J.; Shi, S. F.; Zhang, Y.; Jin, C. H.; Sun, Y. H.; Tongay, S.; Wu, J. Q.; Zhang, Y. F.; Wang, F. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 2014, 9, 682–686.

    Article  Google Scholar 

  5. Withers, F.; Del Pozo-Zamudio, O.; Mishchenko, A.; Rooney, A. P.; Gholinia, A.; Watanabe, K.; Taniguchi, T.; Haigh, S. J.; Geim, A. K.; Tartakovskii, A. I. et al. Lightemitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 2015, 14, 301–306.

    Article  Google Scholar 

  6. Zhao, M.; Zhang, W. T.; Liu, M. M.; Zou, C.; Yang, K. Q.; Yang, Y.; Dong, Y. Q.; Zhang, L. J.; Huang, S. M. Interlayer coupling in anisotropic/isotropic van der Waals heterostructures of ReS2 and MoS2 monolayers. Nano Res. 2016, 9, 3772–3780.

    Article  Google Scholar 

  7. Wang, X. T.; Huang, L.; Peng, Y. T.; Huo, N. J.; Wu, K. D.; Xia, C. X.; Wei, Z. M.; Tongay, S.; Li, J. B. Enhanced rectification, transport property and photocurrent generation of multilayer ReSe2/MoS2 p–n heterojunctions. Nano Res. 2016, 9, 507–516.

    Article  Google Scholar 

  8. Jariwala, D.; Marks, T. J.; Hersam, M. C. Mixed-dimensional van der Waals heterostructures. Nat. Mater. 2017, 16, 170–181.

    Article  Google Scholar 

  9. Sarkar, D.; Xie, X. J.; Liu, W.; Cao, W.; Kang, J. H.; Gong, Y. J.; Kraemer, S.; Ajayan, P. M.; Banerjee, K. A subthermionic tunnel field-effect transistor with an atomically thin channel. Nature 2015, 526, 91–95.

    Article  Google Scholar 

  10. Liao, L.; Lin, Y. C.; Bao, M. Q.; Cheng, R.; Bai, J. W.; Liu, Y.; Qu, Y. Q.; Wang, K. L.; Huang, Y.; Duan, X. F. High-speed graphene transistors with a self-aligned nanowire gate. Nature 2010, 467, 305–308.

    Article  Google Scholar 

  11. Liu, Y. D.; Wang, F. Q.; Wang, X. M.; Wang, X. Z.; Flahaut, E.; Liu, X. L.; Li, Y.; Wang, X. R.; Xu, Y. B.; Shi, Y. et al. Planar carbon nanotube-graphene hybrid films for highperformance broadband photodetectors. Nat. Commun. 2015, 6, 8589.

    Article  Google Scholar 

  12. Yang, H.; Heo, J.; Park, S.; Song, H. J.; Seo, D. H.; Byun, K. E.; Kim, P.; Yoo, I.; Chung, H. J.; Kim, K. Graphene barristor, a triode device with a gate-controlled schottky barrier. Science 2012, 336, 1140–1143.

    Article  Google Scholar 

  13. Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; de Arquer, F. P. G.; Gatti, F.; Koppens, F. H. L. Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 2012, 7, 363–368.

    Article  Google Scholar 

  14. Shao, D. L.; Gao, J.; Chow, P.; Sun, H. T.; Xin, G. Q.; Sharma, P.; Lian, J.; Koratkar, N. A.; Sawyer, S. Organicinorganic heterointerfaces for ultrasensitive detection of ultraviolet light. Nano Lett. 2015, 15, 3787–3792.

    Article  Google Scholar 

  15. Sun, Z. H.; Liu, Z. K.; Li, J. H.; Tai, G.-A.; Lau, S.-P.; Yan, F. Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity. Adv. Mater. 2012, 24, 5878–5883.

    Article  Google Scholar 

  16. Wang, Z. H.; Li, M. Z.; Yang, L.; Zhang, Z. D.; Gao, X. P. A. Broadband photovoltaic effect of n-type topological insulator Bi2Te3 films on p-type Si substrates. Nano Res. 2017, 10, 1872–1879.

    Article  Google Scholar 

  17. Liu, Y. J.; Liu, Y. D.; Qin, S. C.; Xu, Y. B.; Zhang, R.; Wang, F. Q. Graphene-carbon nanotube hybrid films for high-performance flexible photodetectors. Nano Res. 2017, 10, 1880–1887.

    Article  Google Scholar 

  18. Liu, Y.; Zhang, Y.; Yang, Q.; Niu, S. M.; Wang, Z. L. Fundamental theories of piezotronics and piezo-phototronics. Nano Energy 2015, 14, 257–275.

    Article  Google Scholar 

  19. Zhang, Y.; Liu, Y.; Wang, Z. L. Fundamental theory of piezotronics. Adv. Mater. 2011, 23, 3004–3013.

    Article  Google Scholar 

  20. Zhang, Y.; Yan, X. Q.; Yang, Y.; Huang, Y. H.; Liao, Q. L.; Qi, J. J. Scanning probe study on the piezotronic effect in ZnO nanomaterials and nanodevices. Adv. Mater. 2012, 24, 4647–4655.

    Article  Google Scholar 

  21. Zhang, Z.; Liao, Q. L.; Yu, Y. H.; Wang, X. D.; Zhang, Y. Enhanced photoresponse of ZnO nanorods-based self-powered photodetector by piezotronic interface engineering. Nano Energy 2014, 9, 237–244.

    Article  Google Scholar 

  22. Liu, S.; Liao, Q. L.; Lu, S. N.; Zheng, Z.; Zhang, G. J.; Zhang, Y. Strain modulation in graphene/ZnO nanorod film schottky junction for enhanced photosensing performance. Adv. Funct. Mater. 2016, 26, 1347–1353.

    Article  Google Scholar 

  23. Pan, C. F.; Dong, L.; Zhu, G.; Niu, S. M.; Yu, R. M.; Yang, Q.; Liu, Y.; Wang, Z. L. High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array. Nat. Photonics 2013, 7, 752–758.

    Article  Google Scholar 

  24. Shi, J.; Zhao, P.; Wang, X. D. Piezoelectric-polarizationenhanced photovoltaic performance in depleted-heterojunction quantum-dot solar cells. Adv. Mater. 2013, 25, 916–921.

    Article  Google Scholar 

  25. Zhou, J.; Gu, Y. D.; Fei, P.; Mai, W. J.; Gao, Y. F.; Yang, R. S.; Bao, G.; Wang, Z. L. Flexible piezotronic strain sensor. Nano Lett. 2008, 8, 3035–3040.

    Article  Google Scholar 

  26. Liu, X. Q.; Yang, X. N.; Gao, G. Y.; Yang, Z. Y.; Liu, H. T.; Li, Q.; Lou, Z.; Shen, G. Z.; Liao, L.; Pan, C. F. et al. Enhancing photoresponsivity of self-aligned MoS2 field-effect transistors by piezo-phototronic effect from GaN nanowires. ACS Nano 2016, 10, 7451–7457.

    Article  Google Scholar 

  27. Xue, F.; Chen, L. B.; Chen, J.; Liu, J. B.; Wang, L. F.; Chen, M. X.; Pang, Y. K.; Yang, X. N.; Gao, G. Y.; Zhai, J. Y. et al. P-type MoS2 and n-type ZnO diode and its performance enhancement by the piezophototronic effect. Adv. Mater. 2016, 28, 3391–3398.

    Article  Google Scholar 

  28. Reina, A.; Son, H.; Jiao, L. Y.; Fan, B.; Dresselhaus, M. S.; Liu, Z. F.; Kong, J. Transferring and identification of singleand few-layer graphene on arbitrary substrates. J. Phys. Chem. C 2008, 112, 17741–17744.

    Article  Google Scholar 

  29. Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Largearea synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

    Article  Google Scholar 

  30. Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D. D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

    Article  Google Scholar 

  31. Ferrari, A. C.; Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235–246.

    Article  Google Scholar 

  32. Sze, S. M.; Ng, K. K. Physics of Semiconductor Devices; John Wiley & Sons: New York, 1981.

    Google Scholar 

  33. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y. S.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  Google Scholar 

  34. Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722–726.

    Article  Google Scholar 

  35. Guo, W. H.; Xu, S. G.; Wu, Z. F.; Wang, N.; Loy, M. M. T.; Du, S. W. Oxygen-assisted charge transfer between ZnO quantum dots and graphene. Small 2013, 9, 3031–3036.

    Article  Google Scholar 

  36. Liu, J. W.; Lu, R. T.; Xu, G. W.; Wu, J.; Thapa, P.; Moore, D. Development of a seedless floating growth process in solution for synthesis of crystalline ZnO micro/nanowire arrays on graphene: Towards high-performance nanohybrid ultraviolet photodetectors. Adv. Funct. Mater. 2013, 23, 4941–4948.

    Article  Google Scholar 

  37. Boruah, B. D.; Mukherjee, A.; Sridhar, S.; Misra, A. Highly dense ZnO nanowires grown on graphene foam for ultraviolet photodetection. ACS Appl. Mater. Interfaces 2015, 7, 10606–10611.

    Article  Google Scholar 

  38. Chang, H. X.; Sun, Z. H.; Ho, K. Y.-F.; Tao, X. M.; Yan, F.; Kwok, W.-M.; Zheng, Z. J. A highly sensitive ultraviolet sensor based on a facile in situ solution-grown ZnO nanorod/ graphene heterostructure. Nanoscale 2011, 3, 258–264.

    Article  Google Scholar 

  39. Dang, V. Q.; Trung, T. Q.; Kim, D. I.; Duy Le, T.; Hwang, B. U.; Lee, D. W.; Kim, B. Y.; Toan Le, D.; Lee, N. E. Ultrahigh responsivity in graphene-ZnO nanorod hybrid UV photodetector. Small 2015, 11, 3054–3065.

    Article  Google Scholar 

  40. Soci, C.; Zhang, A.; Xiang, B.; Dayeh, S. A.; Aplin, D. P. R.; Park, J.; Bao, X. Y.; Lo, Y. H.; Wang, D. ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 2007, 7, 1003–1009.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (No. 2013CB932602), the National Key Research and Development Program of China (No. 2016YFA0202701), the Program of Introducing Talents of Discipline to Universities (No. B14003), National Natural Science Foundation of China (Nos. 51672026, 51602020, 51527802, and 51232001), China Postdoctoral Science Foundation (Nos. 2015M580981 and 2016T90033), Beijing Municipal Science & Technology Commission, and the State Key Laboratory for Advanced Metals and Materials (No. 2016Z-06), and the Fundamental Research Funds for the Central Universities (Nos. FRF-TP-15-075A1, FRF-BR-15-036A, and FRF-AS-15-002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zheng Zhang or Yue Zhang.

Electronic supplementary material

12274_2017_1559_MOESM1_ESM.pdf

Strain modulation on graphene/ZnO nanowire mixed-dimensional van der Waals heterostructure for high-performance photosensor

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Liao, Q., Zhang, Z. et al. Strain modulation on graphene/ZnO nanowire mixed-dimensional van der Waals heterostructure for high-performance photosensor. Nano Res. 10, 3476–3485 (2017). https://doi.org/10.1007/s12274-017-1559-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1559-6

Keywords

Navigation