Skip to main content
Log in

Facet and dimensionality control of Pt nanostructures for efficient oxygen reduction and methanol oxidation electrocatalysts

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The control of the size, composition, and shape of platinum nanocrystals has attracted much attention recently, mostly due to their unique properties and related catalytic functionalities. However, the realization of platinum nanocrystals with controlled exposed facets and dimensionality remains a significant challenge. Herein, we show an efficient synthetic strategy to selectively prepare highly controllable platinum nanocrystals with distinct dimensionalities from onedimensional nanowires to zero-dimensional octahedra. Although the synthesis of platinum nanowires has been reported multiple times, the synthetic approach reported herein is much more novel and robust and ultimately results in high yields of high-quality platinum nanowires. Such dimensionality tuning on {111} facet dominated platinum nanocrystals allows us to firstly investigate the effect of the number of edges/corners on the electrocatalytic properties. Our results show that the synthesized platinum nanocrystals exhibit very interesting dimensionality-dependent electrocatalytic activity towards both the oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR), in which one-dimensional platinum nanowires with minimized edges/corners show enhanced electrocatalytic activities with respect to zero-dimensional platinum octahedra. Our dimensionality tuning also provides Pt nanowires with superior durability for the oxygen reduction reaction with negligible activity decay over the course of 30,000 potential sweeps. The present work highlights that the {111} facet bound platinum nanowires with minimized edges/corners are indeed promising candidates as electrocatalysts with excellent activity and superior durability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu, X. L.; Zhang, X.; Sun, H.; Yang, Y.; Dai, X. P.; Gao, J. S.; Li, X. Y.; Zhang, P. F.; Wang, H. H.; Yu, N. F. et al. Synthesis of Pt-Ni alloy nanocrystals with high-index facets and enhanced electrocatalytic properties. Angew. Chem., Int. Ed. 2014, 126, 12730–12735.

    Article  Google Scholar 

  2. Wu, J. B.; Yang, H. Platinum-based oxygen reduction electrocatalysts. Acc. Chem. Res. 2013, 46, 1848–1857.

    Article  Google Scholar 

  3. You, H. J.; Zhang, F. L.; Liu, Z.; Fang, J. X. Free-standing Pt–Au hollow nanourchins with enhanced activity and stability for catalytic methanol oxidation. ACS Catal. 2014, 4, 2829–2835.

    Article  Google Scholar 

  4. Xia, B. Y.; Ng, W. T.; Wu, H. B.; Wang, X.; Lou, X. W. Self-supported interconnected Pt nanoassemblies as highly stable electrocatalysts for low-temperature fuel cells. Angew. Chem., Int. Ed. 2012, 124, 7325–7328.

    Article  Google Scholar 

  5. Wu, J. B.; Gross, A.; Yang, H. Shape and compositioncontrolled platinum alloy nanocrystals using carbon monoxide as reducing agent. Nano Lett. 2011, 11, 798–802.

    Article  Google Scholar 

  6. Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 2007, 316, 732–735.

    Article  Google Scholar 

  7. Huang, X. Q.; Zhao, Z. P.; Fan, J. M.; Tan, Y. M.; Zheng, N. F. Amine-assisted synthesis of concave polyhedral platinum nanocrystals having {411} high-index facets. J. Am. Chem. Soc. 2011, 133, 4718–4721.

    Article  Google Scholar 

  8. Lacroix, L. M.; Gatel, C.; Arenal, R.; Garcia, C.; Lachaize, S.; Blon, T.; Warot-Fonrose, B.; Snoeck, E.; Chaudret, B.; Viau, G. Tuning complex shapes in platinum nanoparticles: From cubic dendrites to fivefold stars. Angew. Chem., Int. Ed. 2012, 51, 4690–4694.

    Article  Google Scholar 

  9. Cui, C. H.; Gan, L.; Heggen, M.; Rudi, S.; Strasser, P. Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nat. Mater. 2013, 12, 765–771.

    Article  Google Scholar 

  10. Wu, Y. E.; Wang, D. S.; Niu, Z. Q.; Chen, P. C.; Zhou, G.; Li, Y. D. A strategy for designing a concave Pt–Ni alloy through controllable chemical etching. Angew. Chem., Int. Ed. 2012, 51, 12524–12528.

    Google Scholar 

  11. Zhu, C. Z.; Guo, S. J.; Dong, S. J. PdM (M = Pt, Au) bimetallic alloy nanowires with enhanced electrocatalytic activity for electro-oxidation of small molecules. Adv. Mater. 2012, 24, 2326–2331.

    Article  Google Scholar 

  12. Guo, S. J.; Zhang, S.; Su, D.; Sun, S. H. Seed-mediated synthesis of core/shell FePtM/FePt (M = Pd, Au) nanowires and their electrocatalysis for oxygen reduction reaction. J. Am. Chem. Soc. 2013, 135, 13879–13884.

    Article  Google Scholar 

  13. Zhang, S.; Hao, Y. Z.; Su, D.; Doan-Nguyen, V. V. T.; Wu, Y. T.; Li, J.; Sun, S. H.; Murray, C. B. Monodisperse core/ shell Ni/FePt nanoparticles and their conversion to Ni/Pt to catalyze oxygen reduction. J. Am. Chem. Soc. 2014, 136, 15921–15924.

    Article  Google Scholar 

  14. Sneed, B. T.; Young, A. P.; Jalalpoor, D.; Golden, M. C.; Mao, S. J.; Jiang, Y.; Wang, Y.; Tsung, C. K. Shaped Pd–Ni–Pt core-sandwich-shell nanoparticles: Influence of Ni sandwich layers on catalytic electrooxidations. ACS Nano 2014, 8, 7239–7250.

    Article  Google Scholar 

  15. Maksimuk, S.; Yang, S. C.; Peng, Z. M.; Yang, H. Synthesis and characterization of ordered intermetallic PtPb nanorods. J. Am. Chem. Soc. 2007, 129, 8684–8685.

    Article  Google Scholar 

  16. Ma, L.; Wang, C. M.; Xia, B. Y.; Mao, K. K.; He, J. W.; Wu, X. J.; Xiong, Y. J.; Lou, X. W. Platinum multicubes prepared by Ni2+-mediated shape evolution exhibit high electrocatalytic activity for oxygen reduction. Angew. Chem., Int. Ed. 2015, 127, 5758–5763.

    Article  Google Scholar 

  17. Komanicky, V.; Menzel, A.; You, H. Investigation of oxygen reduction reaction kinetics at (111)-(100) nanofaceted platinum surfaces in acidic media. J. Phys. Chem. B 2005, 109, 23550–23557.

    Article  Google Scholar 

  18. Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G. F.; Ross, P. N.; Lucas, C. A.; Markovic, N. M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 2007, 315, 493–497.

    Article  Google Scholar 

  19. Cui, C. H.; Li, H. H.; Liu, X. J.; Gao, M. R.; Yu, S. H. Surface composition and lattice ordering-controlled activity and durability of CuPt electrocatalysts for oxygen reduction reaction. ACS Catal. 2012, 2, 916–924.

    Article  Google Scholar 

  20. Cui, C. H.; Gan, L.; Li, H. H.; Yu, S. H.; Heggen, M.; Strasser, P. Octahedral PtNi nanoparticle catalysts: Exceptional oxygen reduction activity by tuning the alloy particle surface composition. Nano Lett. 2012, 12, 5885–5889.

    Article  Google Scholar 

  21. Xia, B. Y.; Wu, H. B.; Yan, Y.; Lou, X. W.; Wang, X. Ultrathin and ultralong single-crystal platinum nanowire assemblies with highly stable electrocatalytic activity. J. Am. Chem. Soc. 2013, 135, 9480–9485.

    Article  Google Scholar 

  22. Rana, M.; Chhetri, M.; Loukya, B.; Patil, P. K.; Datta, R.; Gautam, U. K. High-yield synthesis of sub-10 nm Pt nanotetrahedra with bare <111> facets for efficient electrocatalytic applications. ACS Appl. Mater. Interfaces 2015, 7, 4998–5005.

    Article  Google Scholar 

  23. Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Shapecontrolled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem., Int. Ed. 2009, 48, 60–103.

    Article  Google Scholar 

  24. Ringe, E.; Van Duyne, R. P.; Marks, L. D. Kinetic and thermodynamic modified wulff constructions for twinned nanoparticles. J. Phys. Chem. C 2013, 117, 15859–15870.

    Article  Google Scholar 

  25. Zhou, W.; Wu, J. B.; Yang, H. Highly uniform platinum icosahedra made by hot injection-assisted GRAILS method. Nano Lett. 2013, 13, 2870–2874.

    Article  Google Scholar 

  26. Marković, N. M.; Schmidt, T. J.; Stamenković, V.; Ross, P. N. Oxygen reduction reaction on Pt and Pt bimetallic surfaces: A selective review. Fuel Cells 2001, 1, 105–116.

    Article  Google Scholar 

  27. He, C. Z.; Desai, S.; Brown, G.; Bollepalli, S. PEM fuel cell catalysts: Cost, performance, and durability. Electrochem. Soc. Interface 2005, 14, 41–44.

    Google Scholar 

  28. Shao, Y. Y.; Yin, G. P.; Gao, Y. Z. Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell. J. Power Sources 2007, 171, 558–566.

    Article  Google Scholar 

  29. Xia, Y. N.; Yang, P. D.; Sun, Y. G.; Wu, Y. Y.; Mayers, B.; Gates, B.; Yin, Y. D.; Kim, F.; Yan, H. Q. One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 2003, 15, 353–389.

    Article  Google Scholar 

  30. Tao, A. R.; Habas, S.; Yang, P. D. Shape control of colloidal metal nanocrystals. Small 2008, 4, 310–325.

    Article  Google Scholar 

  31. Koenigsmann, C.; Santulli, A. C.; Gong, K. P.; Vukmirovic, M. B.; Zhou, W. P.; Sutter, E.; Wong, S. S.; Adzic, R. R. Enhanced electrocatalytic performance of processed, ultrathin, supported Pd–Pt core–shell nanowire catalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 2011, 133, 9783–9795.

    Article  Google Scholar 

  32. Guo, S. J.; Li, D. G.; Zhu, H. Y.; Zhang, S.; Markovic, N. M.; Stamenkovic, V. R.; Sun, S. H. FePt and CoPt nanowires as efficient catalysts for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2013, 52, 3465–3468.

    Article  Google Scholar 

  33. Guo, S. J.; Zhang, S.; Sun, X. L.; Sun, S. H. Synthesis of ultrathin FePtPd nanowires and their use as catalysts for methanol oxidation reaction. J. Am. Chem. Soc. 2011, 133, 15354–15357.

    Article  Google Scholar 

  34. Zhu, H. Y.; Zhang, S.; Guo, S. J.; Su, D.; Sun, S. H. Synthetic control of FePtM nanorods (M = Cu, Ni) to enhance the oxygen reduction reaction. J. Am. Chem. Soc. 2013, 135, 7130–7133.

    Article  Google Scholar 

  35. Clavilier, J. The role of anion on the electrochemical behaviour of a {111} platinum surface; an unusual splitting of the voltammogram in the hydrogen region. J. Electroanal. Chem. Interfacial Electrochem. 1980, 107, 211–216.

    Article  Google Scholar 

  36. Song, Y. J.; Garcia, R. M.; Dorin, R. M.; Wang, H. R.; Qiu, Y.; Coker, E. N.; Steen, W. A.; Miller, J. E.; Shelnutt, J. A. Synthesis of platinum nanowire networks using a soft template. Nano Lett. 2007, 7, 3650–3655.

    Article  Google Scholar 

  37. Li, C. L.; Jiang, B.; Miyamoto, N.; Kim, J. H.; Malgras, V.; Yamauchi, Y. Surfactant-directed synthesis of mesoporous Pd films with perpendicular mesochannels as efficient electrocatalysts. J. Am. Chem. Soc. 2015, 137, 11558–11561.

    Article  Google Scholar 

  38. Huang, X. Q.; Zheng, N. F. One-pot, high-yield synthesis of 5-fold twinned Pd nanowires and nanorods. J. Am. Chem. Soc. 2009, 131, 4602–4603.

    Article  Google Scholar 

  39. Technical plan—Fuel cells. In Muti-year Research, Development, and Demonstration Plan [Online]; U. S. Department of Energy, 2012, pp 3.4-1–3.4-58. (http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/fuel_cells.pdf) (accessed Jun 6, 2016).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianlin Yao or Xiaoqing Huang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bu, L., Feng, Y., Yao, J. et al. Facet and dimensionality control of Pt nanostructures for efficient oxygen reduction and methanol oxidation electrocatalysts. Nano Res. 9, 2811–2821 (2016). https://doi.org/10.1007/s12274-016-1170-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1170-2

Keywords

Navigation