Skip to main content
Log in

Immobilization of NiS nanoparticles on N-doped carbon fiber aerogels as advanced electrode materials for supercapacitors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

NiS nanoparticles (NPs) with excellent electrochemical capacitance have attracted considerable attention as cost-effective energy-storage materials for supercapacitors in recent years. Preventing the aggregation and increasing the conductivity of NiS NPs are key to fully realizing their excellent electrochemical properties. In this work, NiS/N-doped carbon fiber aerogel (N-CFA) nanocomposites were obtained easily through the combination of polymerization, carbonization, and a one-step solvothermal reaction. N-CFA derived from polydopamine (PDA)-coated cotton wool was used as a template for the construction of hierarchical NiS/N-CFA nanocomposites, in which NiS NPs are uniformly immobilized on the surface of N-CFA. In this nanostructured system, N-CFA containing abundant nanofibers not only provides active regions for the growth of NiS NPs to prevent their aggregation, but also offers short pathways for the transport of electrons and ions. The electrochemical properties of the obtained NiS/N-CFA nanocomposites were investigated by cyclic voltammetry, galvanostatic charge–discharge, and alternating current impedance measurements. The optimized NiS/N-CFA nanocomposite exhibits a high specific capacitance of 1,612.5 F·g‒1 at a charge/discharge current density of 1 A·g‒1 and excellent rate capacitance retention of 66.7% at 20 A·g‒1. The excellent electrochemical properties of NiS/N-CFA nanocomposites make these materials promising electrode materials for supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yan, J.; Wang, Q.; Wei, T.; Fan, Z. J. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater. 2014, 4, 1300816.

    Article  Google Scholar 

  2. Zhang, L. Z.; Yu, J. C.; Mo, M. S.; Wu, L.; Li, Q.; Kwong, K. W. A general solution-phase approach to oriented nanostructured films of metal chalcogenides on metal foils: The case of nickel sulfide. J. Am. Chem. Soc. 2004, 126, 8116–8117.

    Article  Google Scholar 

  3. Ma, Y. W.; Li, P.; Sedloff, J. W.; Zhang, X.; Zhang, H. B.; Liu, J. Conductive graphene fibers for wire-shaped supercapacitors strengthened by unfunctionalized few-walled carbon nanotubes. ACS Nano 2015, 9, 1352–1359.

    Article  Google Scholar 

  4. Ghotbi, M. Y.; Azadfalah, M. Design of a layered nanoreactor to produce nitrogen doped carbon nanosheets as highly efficient material for supercapacitors. Mater. Design 2016, 89, 708–714.

    Article  Google Scholar 

  5. Feng, H. B.; Hu, H.; Dong, H. W.; Xiao, Y.; Cai, Y. J.; Lei, B. F.; Liu, Y. L.; Zheng, M. T. Hierarchical structured carbon derived from bagasse wastes: A simple and efficient synthesis route and its improved electrochemical properties for highperformance supercapacitors. J. Power Sources 2016, 302, 164–173.

    Article  Google Scholar 

  6. Wang, K.; Wu, H. P.; Meng, Y. N.; Wei, Z. X. Conducting polymer nanowire arrays for high performance supercapacitors. Small 2014, 10, 14–31.

    Article  Google Scholar 

  7. Shown, I.; Ganguly, A.; Chen, L. C.; Chen, K. H. Conducting polymer-based flexible supercapacitor. Energy Sci. Eng. 2015, 3, 2–26.

    Article  Google Scholar 

  8. Yu, X. Y.; Yu, L.; Shen, L. F.; Song, X. H.; Chen, H. Y.; Lou, X. W. General formation of MS (M = Ni, Cu, Mn) box-in-box hollow structures with enhanced pseudocapacitive properties. Adv. Funct. Mater. 2014, 24, 7440–7446.

    Article  Google Scholar 

  9. Yang, C.; Zhang, L. L.; Hu, N. T.; Yang, Z.; Wei, H.; Zhang, Y. F. Reduced graphene oxide/polypyrrole nanotube papers for flexible all-solid-state supercapacitors with excellent rate capability and high energy density. J. Power Sources 2016, 302, 39–45.

    Article  Google Scholar 

  10. Sun, X.; Guo, Y. Q.; Wu, C. Z.; Xie, Y. The hydric effect in inorganic nanomaterials for nanoelectronics and energy applications. Adv. Mater. 2015, 27, 3850–3867.

    Article  Google Scholar 

  11. Yu, C. F.; Ma, P. P.; Zhou, X.; Wang, A. Q.; Qian, T.; Wu, S. S.; Chen, Q. All-solid-state flexible supercapacitors based on highly dispersed polypyrrole nanowire and reduced graphene oxide composites. ACS Appl. Mater. Interfaces 2014, 6, 17937–17943.

    Article  Google Scholar 

  12. Yang, J. Q.; Duan, X. C.; Guo, W.; Li, D.; Zhang, H. L.; Zheng, W. J. Electrochemical performances investigation of NiS/rGO composite as electrode material for supercapacitors. Nano Energy 2014, 5, 74–81.

    Article  Google Scholar 

  13. Hou, L. R.; Yuan, C. Z.; Li, D. K.; Yang, L.; Shen, L. F.; Zhang, F.; Zhang, X. G. Electrochemically induced transformation of NiS nanoparticles into Ni(OH)2 in KOH aqueous solution toward electrochemical capacitors. Electrochim. Acta 2011, 56, 7454–7459.

    Article  Google Scholar 

  14. Xing, Z. C.; Chu, Q. X.; Ren, X. B.; Tian, J. Q.; Asiri, A. M.; Alamry, K. A.; Al-Youbi, A. O.; Sun, X. P. Biomoleculeassisted synthesis of nickel sulfides/reduced graphene oxide nanocomposites as electrode materials for supercapacitors. Electrochem. Commun. 2013, 32, 9–13.

    Article  Google Scholar 

  15. Ma, L. B.; Shen, X. P.; Ji, Z. Y.; Wang, S.; Zhou, H.; Zhu, G. X. Carbon coated nickel sulfide/reduced graphene oxide nanocomposites: Facile synthesis and excellent supercapacitor performance. Electrochim. Acta 2014, 146, 525–532.

    Article  Google Scholar 

  16. Peng, L.; Ji, X.; Wan, H. Z.; Ruan, Y. J.; Xu, K.; Chen, C.; Miao, L.; Jiang, J. J. Nickel sulfide nanoparticles synthesized by microwave-assisted method as promising supercapacitor electrodes: An experimental and computational study. Electrochim. Acta 2015, 182, 361–367.

    Article  Google Scholar 

  17. Mahmood, N.; Zhang, C. Z.; Hou, Y. L. Nickel sulfide/nitrogen-doped graphene composites: Phase-controlled synthesis and high performance anode materials for lithium ion batteries. Small 2013, 9, 1321–1328.

    Article  Google Scholar 

  18. Gao, Y.; Mi, L. W.; Wei, W. T.; Cui, S. Z.; Zheng, Z.; Hou, H. W.; Chen, W. H. Double metal ions synergistic effect in hierarchical multiple sulfide microflowers for enhanced supercapacitor performance. ACS Appl. Mater. Interfaces 2015, 7, 4311–4319.

    Article  Google Scholar 

  19. Mei, L.; Yang, T.; Xu, C.; Zhang, M.; Chen, L. B.; Li, Q. H.; Wang, T. H. Hierarchical mushroom-like CoNi2S4 arrays as a novel electrode material for supercapacitors. Nano Energy 2014, 3, 36–45.

    Article  Google Scholar 

  20. Yang, J. Q.; Guo, W.; Li, D.; Qin, Q.; Zhang, J.; Wei, C. Y.; Fan, H. M.; Wu, L. Y.; Zheng, W. J. Hierarchical porous NiCo2S4 hexagonal plates: Formation via chemical conversion and application in high performance supercapacitors. Electrochim. Acta 2014, 144, 16–21.

    Article  Google Scholar 

  21. Nguyen, V. H.; Shim, J. J. In situ growth of hierarchical mesoporous NiCo2S4@MnO2 arrays on nickel foam for high-performance supercapacitors. Electrochim. Acta 2015, 166, 302–309.

    Article  Google Scholar 

  22. Zhu, Y. R.; Wu, Z. B.; Jing, M. J.; Yang, X. M.; Song, W. X.; Ji, X. B. Mesoporous NiCo2S4 nanoparticles as highperformance electrode materials for supercapacitors. J. Power Sources 2015, 273, 584–590.

    Article  Google Scholar 

  23. Ratha, S.; Rout, C. S. Supercapacitor electrodes based on layered tungsten disulfide-reduced graphene oxide hybrids synthesized by a facile hydrothermal method. ACS Appl. Mater. Interfaces 2013, 5, 11427–11433.

    Article  Google Scholar 

  24. Li, Y. J.; Ye, K.; Cheng, K.; Yin, J. L.; Cao, D. X.; Wang, G. L. Electrodeposition of nickel sulfide on graphenecovered make-up cotton as a flexible electrode material for high-performance supercapacitors. J. Power Sources 2015, 274, 943–950.

    Article  Google Scholar 

  25. Yu, X. Y.; Yu, L.; Wu, H. B.; Lou, X. W. Formation of nickel sulfide nanoframes from metal–organic frameworks with enhanced pseudocapacitive and electrocatalytic properties. Angew. Chem., Int. Ed. 2015, 54, 5331–5335.

    Article  Google Scholar 

  26. Zhu, B.; Wang, Z. Y.; Ding, S. J.; Chen, J. S.; Lou, X. W. Hierarchical nickel sulfide hollow spheres for high performance supercapacitors. RSC Adv. 2011, 1, 397–400.

    Article  Google Scholar 

  27. Wang, Z.; Nan, C. Y.; Wang, D. S.; Li, Y. D. Fabrication of 1D nickel sulfide nanocrystals with high capacitances and remarkable durability. RSC Adv. 2014, 4, 47513–47516.

    Article  Google Scholar 

  28. Yang, J. Q.; Duan, X. C.; Qin, Q.; Zheng, W. J. Solvothermal synthesis of hierarchical flower-like β-NiS with excellent electrochemical performance for supercapacitors. J. Mater. Chem. A 2013, 1, 7880–7884.

    Article  Google Scholar 

  29. Yang, K. S.; Kim, B. H. Highly conductive, porous RuO2/activated carbon nanofiber composites containing graphene for electrochemical capacitor electrodes. Electrochim. Acta 2015, 186, 337–344.

    Article  Google Scholar 

  30. Zhang, Z. M.; Zhao, C. J.; Min, S. D.; Qian, X. Z. A facile one-step route to RGO/Ni3S2 for high-performance supercapacitors. Electrochim. Acta 2014, 144, 100–110.

    Article  Google Scholar 

  31. Wang, A. M.; Wang, H. L.; Zhang, S. Y.; Mao, C. J.; Song, J. M.; Niu, H. L.; Jin, B. K.; Tian, Y. P. Controlled synthesis of nickel sulfide/graphene oxide nanocomposite for highperformance supercapacitor. Appl. Surf. Sci. 2013, 282, 704–708.

    Article  Google Scholar 

  32. Liu, X. J.; Qi, X.; Zhang, Z.; Ren, L.; Liu, Y. D.; Meng, L. J.; Huang, K.; Zhong, J. X. One-step electrochemical deposition of nickel sulfide/graphene and its use for supercapacitors. Ceram. Int. 2014, 40, 8189–8193.

    Article  Google Scholar 

  33. Cai, F.; Sun, R.; Kang, Y. R.; Chen, H. Y.; Chen, M. H.; Li, Q. W. One-step strategy to a three-dimensional NiSreduced graphene oxide hybrid nanostructure for high performance supercapacitors. RSC Adv. 2015, 5, 23073–23079.

    Article  Google Scholar 

  34. Zhu, T.; Wu, H. B.; Wang, Y. B.; Xu, R.; Lou, X. W. Formation of 1D hierarchical structures composed of Ni3S2 nanosheets on CNTs backbone for supercapacitors and photocatalytic H2 production. Adv. Energy Mater. 2012, 2, 1497–1502.

    Article  Google Scholar 

  35. Dai, C. S.; Chien, P. Y.; Lin, J. Y.; Chou, S. W.; Wu, W. K.; Li, P. H.; Wu, K. Y.; Lin, T. W. Hierarchically structured Ni3S2/carbon nanotube composites as high performance cathode materials for asymmetric supercapacitors. ACS Appl. Mater. Interfaces 2013, 5, 12168–12174.

    Article  Google Scholar 

  36. Singh, A.; Roberts, A. J.; Slade, R. C. T.; Chandra, A. High electrochemical performance in asymmetric supercapacitors using MWCNT/nickel sulfide composite and graphene nanoplatelets as electrodes. J. Mater. Chem. A 2014, 2, 16723–16730.

    Article  Google Scholar 

  37. Yan, J.; Lui, G.; Tjandra, R.; Wang, X. L.; Rasenthiram, L.; Yu, A. P. α-NiS grown on reduced graphene oxide and single-wall carbon nanotubes as electrode materials for high-power supercapacitors. RSC Adv. 2015, 5, 27940–27945.

    Article  Google Scholar 

  38. Yu, W. D.; Lin, W. R.; Shao, X. F.; Hu, Z. X.; Li, R. C.; Yuan, D. S. High performance supercapacitor based on Ni3S2/carbon nanofibers and carbon nanofibers electrodes derived from bacterial cellulose. J. Power Sources 2014, 272, 137–143.

    Article  Google Scholar 

  39. Wang, Z. Q.; Li, X.; Yang, Y.; Cui, Y. J.; Pan, H. G.; Wang, Z. Y.; Chen, B. L.; Qian, G. D. Highly dispersed β-NiS nanoparticles in porous carbon matrices by a template metal–organic framework method for lithium-ion cathode. J. Mater. Chem. A 2014, 2, 7912–7916.

    Article  Google Scholar 

  40. Chen, Y. P.; Liu, B. R.; Jiang, W.; Liu, Q.; Liu, J. Y.; Wang, J.; Zhang, H. S.; Jing, X. Y. Coaxial threedimensional CoMoO4 nanowire arrays with conductive coating on carbon cloth for high-performance lithium ion battery anode. J. Power Sources 2015, 300, 132–138.

    Article  Google Scholar 

  41. Zhang, H. M.; Yu, X. Z.; Guo, D.; Qu, B. H.; Zhang, M.; Li, Q. H.; Wang, T. H. Synthesis of bacteria promoted reduced graphene oxide-nickel sulfide networks for advanced supercapacitors. ACS Appl. Mater. Interfaces 2013, 5, 7335–7340.

    Article  Google Scholar 

  42. Xu, Y. X.; Sheng, K. X.; Li, C.; Shi, G. Q. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 2010, 4, 4324–4330.

    Article  Google Scholar 

  43. Sheng, K. X.; Xu, Y. X.; Li, C.; Shi, G. Q. High-performance self-assembled graphene hydrogels prepared by chemical reduction of graphene oxide. New Carbon Mater. 2011, 26, 9–15.

    Article  Google Scholar 

  44. Xu, Y. X.; Lin, Z. Y.; Huang, X. Q.; Liu, Y.; Huang, Y.; Duan, X. F. Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. ACS Nano 2013, 7, 4042–4049.

    Article  Google Scholar 

  45. Sui, Z. Y.; Meng, Y. N.; Xiao, P. W.; Zhao, Z. Q.; Wei, Z. X.; Han, B. H. Nitrogen-doped graphene aerogels as efficient supercapacitor electrodes and gas adsorbents. ACS Appl. Mater. Interfaces 2015, 7, 1431–1438.

    Article  Google Scholar 

  46. Sun, H. Y.; Xu, Z.; Gao, C. Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv. Mater. 2013, 25, 2554–2560.

    Article  Google Scholar 

  47. Van Aken, K. L.; Pérez, C. R.; Oh, Y.; Beidaghi, M.; Jeong, Y. J.; Islam, M. F.; Gogotsi, Y. High rate capacitive performance of single-walled carbon nanotube aerogels. Nano Energy 2015, 15, 662–669.

    Article  Google Scholar 

  48. Wang, C. H.; He, X. D.; Shang, Y. Y.; Peng, Q. Y.; Qin, Y. Y.; Shi, E. Z.; Yang, Y. B.; Wu, S. T.; Xu, W. J.; Du, S. Y. et al. Multifunctional graphene sheet-nanoribbon hybrid aerogels. J. Mater. Chem. A 2014, 2, 14994–15000.

    Article  Google Scholar 

  49. Chen, L.; Du, R.; Zhu, J. H.; Mao, Y. Y.; Xue, C.; Zhang, N.; Hou, Y. L.; Zhang, J.; Yi, T. Three-dimensional nitrogendoped graphene nanoribbons aerogel as a highly efficient catalyst for the oxygen reduction reaction. Small 2015, 11, 1423–1429.

    Article  Google Scholar 

  50. Zhang, Y. F.; Fan, W.; Huang, Y. P.; Zhang, C.; Liu, T. X. Graphene/carbon aerogels derived from graphene crosslinked polyimide as electrode materials for supercapacitors. RSC Adv. 2015, 5, 1301–1308.

    Article  Google Scholar 

  51. Liu, R. L.; Wan, L.; Liu, S. Q.; Pan, L. X.; Wu, D. Q.; Zhao, D. Y. An interface-induced co-assembly approach towards ordered mesoporous carbon/graphene aerogel for high-performance supercapacitors. Adv. Funct. Mater. 2015, 25, 526–533.

    Article  Google Scholar 

  52. Zuo, L. Z.; Zhang, Y. F.; Zhang, L. S.; Miao, Y. E.; Fan, W.; Liu, T. X. Polymer/carbon-based hybrid aerogels: Preparation, properties and applications. Materials 2015, 8, 6806–6848.

    Article  Google Scholar 

  53. Xu, X. Z.; Zhou, J.; Nagaraju, D. H.; Jiang, L.; Marinov, V. R.; Lubineau, G.; Alshareef, H. N.; Oh, M. Flexible, highly graphitized carbon aerogels based on bacterial cellulose/lignin: Catalyst-free synthesis and its application in energy storage devices. Adv. Funct. Mater. 2015, 25, 3193–3202.

    Article  Google Scholar 

  54. Bi, H. C.; Yin, Z. Y.; Cao, X. H.; Xie, X.; Tan, C. L.; Huang, X.; Chen, B.; Chen, F. C.; Yang, Q. L.; Bu, X. Y. et al. Carbon fiber aerogel made from raw cotton: A novel, efficient and recyclable sorbent for oils and organic solvents. Adv. Mater. 2013, 25, 5916–5921.

    Article  Google Scholar 

  55. Fan, W.; Xia, Y. Y.; Tjiu, W. W.; Pallathadka, P. K.; He, C. B.; Liu, T. X. Nitrogen-doped graphene hollow nanospheres as novel electrode materials for supercapacitor applications. J. Power Sources 2013, 243, 973–981.

    Article  Google Scholar 

  56. Mahmood, N.; Tahir, M.; Mahmood, A.; Zhu, J. H.; Cao, C. B.; Hou, Y. L. Chlorine-doped carbonated cobalt hydroxide for supercapacitors with enormously high pseudocapacitive performance and energy density. Nano Energy 2015, 11, 267–276.

    Article  Google Scholar 

  57. Yin, H.; Zhang, C. Z.; Liu, F.; Hou, Y. L. Hybrid of iron nitride and nitrogen-doped graphene aerogel as synergistic catalyst for oxygen reduction reaction. Adv. Funct. Mater. 2014, 24, 2930–2937.

    Article  Google Scholar 

  58. Yan, J. J.; Huang, Y. P.; Miao, Y. E.; Tjiu, W. W.; Liu, T. X. Polydopamine-coated electrospun poly(vinyl alcohol)/ poly(acrylic acid) membranes as efficient dye adsorbent with good recyclability. J. Hazard. Mater. 2015, 283, 730–739.

    Article  Google Scholar 

  59. Jeong, H. M.; Lee, J. W.; Shin, W. H.; Choi, Y. J.; Shin, H. J.; Kang, J. K.; Choi, J. W. Nitrogen-doped graphene for highperformance ultracapacitors and the importance of nitrogendoped sites at basal planes. Nano Lett. 2011, 11, 2472–2477.

    Article  Google Scholar 

  60. Sun, C. C.; Ma, M. Z.; Yang, J.; Zhang, Y. F.; Chen, P.; Huang, W.; Dong, X. C. Phase-controlled synthesis of α-NiS nanoparticles confined in carbon nanorods for high performance supercapacitors. Sci. Rep. 2014, 4, 7054.

    Article  Google Scholar 

  61. Yang, J. Q.; Guo, W.; Li, D.; Wei, C. Y.; Fan, H. M.; Wu, L. Y.; Zheng, W. J. Synthesis and electrochemical performances of novel hierarchical flower-like nickel sulfide with tunable number of composed nanoplates. J. Power Sources 2014, 268, 113–120.

    Article  Google Scholar 

  62. Zhang, Y.; Sun, W. P.; Rui, X. H.; Li, B.; Tan, H. T.; Guo, G. L.; Madhavi, S.; Zong, Y.; Yan, Q. Y. One-pot synthesis of tunable crystalline Ni3S4@amorphous MoS2 core/shell nanospheres for high-performance supercapacitors. Small 2015, 11, 3694–3702.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Fan or Tianxi Liu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zuo, L., Zhang, L. et al. Immobilization of NiS nanoparticles on N-doped carbon fiber aerogels as advanced electrode materials for supercapacitors. Nano Res. 9, 2747–2759 (2016). https://doi.org/10.1007/s12274-016-1163-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1163-1

Keywords

Navigation