Skip to main content
Log in

Theoretical study on rotary-sliding disk triboelectric nanogenerators in contact and non-contact modes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The triboelectric nanogenerator (TENG) has emerged as a new and effective mechanical energy harvesting technology. In this work, a theoretical model for a rotary-sliding disk TENG with grating structure was constructed, including the dielectric-to-dielectric and conductor-to-dielectric cases. The finite element method (FEM) was utilized to characterize the fundamental physics of the rotarysliding disk TENG working in both contact and non-contact modes. The basic properties of disk TENG were found to be controlled by the structural parameters such as tribo-surface spacing, grating number, and geometric size. From the FEM calculations, an approximate V–Q–α relationship was built through the interpolation method, and then the TENG dynamic output characteristics with arbitrary load resistance were numerically calculated. Finally, the dependencies of output power and matched resistance on the structural parameters and rotation rate were revealed. The present work provides an in-depth understanding of the working principle of the rotary-sliding disk TENG and serves as important guidance for optimizing TENG output performance in specific applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. O’Regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740.

    Article  Google Scholar 

  2. Dresselhaus, M. S.; Chen, G.; Tang, M. Y.; Yang, R. G.; Lee, H.; Wang, D. Z.; Ren, Z. F.; Fleurial, J. P.; Gogna, P. New directions for low-dimensional thermoelectric materials. Adv. Mater. 2007, 19, 1043–1053.

    Article  Google Scholar 

  3. Wang, Z. L.; Zhu, G.; Yang, Y.; Wang, S. H.; Pan, C. F. Progress in nanogenerators for portable electronics. Mater. Today 2012, 15, 532–543.

    Article  Google Scholar 

  4. Wang, S. H.; Lin, L.; Wang, Z. L. Triboelectric nanogenerators as self-powered active sensors. Nano Energy 2015, 11, 436–462.

    Article  Google Scholar 

  5. Wang, Z. L.; Song, J. H. Piezoelectric nanogenerators based on zinc oxidenanowire arrays. Science 2006, 312, 242–246.

    Article  Google Scholar 

  6. Qin, Y.; Wang, X. D.; Wang, Z. L. Microfibre–nanowire hybrid structure for energy scavenging. Nature 2008, 451, 809–813.

    Article  Google Scholar 

  7. Williams, C. B.; Shearwood, C.; Harradine, M. A.; Mellor, P. H.; Birch, T. S.; Yates, R. B. Development of an electromagnetic micro-generator. IEEE Proc. Circ. Dev. Syst. 2001, 148, 337–342.

    Article  Google Scholar 

  8. Beeby, S. P.; Torah, R. N.; Tudor, M. J.; Glynne-Jones, P.; O’ Donnell, T.; Saha, C. R.; Roy, S. A micro electromagnetic generator for vibration energy harvesting. J. Micromech. Microeng. 2007, 17, 1257–1265.

    Article  Google Scholar 

  9. Jefimenko, O. D.; Walker, D. K. Electrostatic current generator having a disk electret as an active element. IEEE Trans. Ind. Appl. 1978, IA-14, 537–540.

    Article  Google Scholar 

  10. Basset, P.; Galayko, D.; Paracha, A. M.; Marty, F.; Dudka, A.; Bourouina, T. A batch-fabricated and electret-free silicon electrostatic vibration energy harvester. J. Micromech. Microeng. 2009, 19, 115025.

    Article  Google Scholar 

  11. Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

    Article  Google Scholar 

  12. Yang, Y.; Zhang, H.; Chen, J.; Jing, Q. S.; Zhou, Y. S.; Wen, X. N.; Wang, Z. L. Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system. ACS Nano 2013, 7, 7342–7351.

    Article  Google Scholar 

  13. Chen, X. Y.; Iwamoto, M.; Shi, Z. M.; Zhang, L. M.; Wang, Z. L. Self-powered trace memorization by conjunction of contact-electrification and ferroelectricity. Adv. Funct. Mater. 2015, 25, 739–746.

    Article  Google Scholar 

  14. Su, Y. J.; Wen, X. N.; Zhu, G.; Yang, J.; Chen, J.; Bai, P.; Wu, Z. M.; Jiang, Y. D.; Wang, Z. L. Hybrid triboelectric nanogenerator for harvesting water wave energy and as a self-powered distress signal emitter. Nano Energy 2014, 9, 186–195.

    Article  Google Scholar 

  15. Zhu, G.; Zhou, Y. S.; Bai, P.; Meng, X. S.; Jing, Q. S.; Chen, J.; Wang, Z. L. A shape-adaptive thin-film-based approach for 50% high-efficiency energy generation through micro-grating sliding electrification. Adv. Mater. 2014, 26, 3788–3796.

    Article  Google Scholar 

  16. Tang, W.; Jiang, T.; Fan, F. R.; Yu, A. F.; Zhang, C.; Cao, X.; Wang, Z. L. Liquid-metal electrode for high-performance triboelectric nanogenerator at an instantaneous energy conversion efficiency of 70.6%. Adv. Funct. Mater. 2015, 25, 3718–3725.

    Article  Google Scholar 

  17. Niu, S. M.; Liu, Y.; Wang, S. H.; Lin, L.; Zhou, Y. S.; Hu, Y. F.; Wang, Z. L. Theory of sliding-mode triboelectric nanogenerators. Adv. Mater. 2013, 25, 6184–6193.

    Article  Google Scholar 

  18. Wang, S. H.; Lin, L.; Xie, Y. N.; Jing, Q. S.; Niu, S. M.; Wang, Z. L. Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. Nano Lett. 2013, 13, 2226–2233.

    Article  Google Scholar 

  19. Lin, L.; Wang, S. H.; Xie, Y. N.; Jing, Q. S.; Niu, S. M.; Hu, Y. F.; Wang, Z. L. Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy. Nano Lett. 2013, 13, 2916–2923.

    Article  Google Scholar 

  20. Han, C. B.; Du, W. M.; Zhang, C.; Tang, W.; Zhang, L. M.; Wang, Z. L. Harvesting energy from automobile brake in contact and non-contact mode by conjunction of triboelectrication and electrostatic-induction processes. Nano Energy 2014, 6, 59–65.

    Article  Google Scholar 

  21. Zhang, C.; Zhou, T.; Tang, W.; Han, C. B.; Zhang, L. M.; Wang, Z. L. Rotating-disk-based direct-current triboelectric nanogenerator. Adv. Energy Mater. 2014, 4, 1301798.

    Google Scholar 

  22. Niu, S. M.; Wang, S. H.; Liu, Y.; Zhou, Y. S.; Lin, L.; Hu, Y. F.; Pradel, K. C.; Wang, Z. L. A theoretical study of grating structured triboelectric nanogenerators. Energy Environ. Sci. 2014, 7, 2339–2349.

    Article  Google Scholar 

  23. Jiang, T.; Chen, X. Y.; Han, C. B.; Tang, W.; Wang, Z. L. Theoretical study of rotary freestanding triboelectric nanogenerators. Adv. Funct. Mater. 2015, 25, 2928–2938.

    Article  Google Scholar 

  24. Niu, S. M.; Liu, Y.; Chen, X. Y.; Wang, S. H.; Zhou, Y. S.; Lin, L.; Xie, Y. N.; Wang, Z. L. Theory of freestanding triboelectric-layer-based nanogenerators. Nano Energy 2015, 12, 760–774.

    Article  Google Scholar 

  25. Niu, S. M.; Zhou, Y. S.; Wang, S. H.; Liu, Y.; Lin, L.; Bando, Y.; Wang, Z. L. Simulation method for optimizing the performance of an integrated triboelectric nanogenerator energy harvesting system. Nano Energy 2014, 8, 150–156.

    Article  Google Scholar 

  26. Stoer, J.; Bulirsch, R. Introduction to Numerical Analysis; Springer: New York, 2002.

    Book  Google Scholar 

  27. Niu, S. M.; Liu, Y.; Wang, S. H.; Lin, L.; Zhou, Y. S.; Hu, Y. F.; Wang, Z. L. Theoretical investigation and structural optimization of single-electrode triboelectric nanogenerators. Adv. Funct. Mater. 2014, 24, 3332–3340.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Lin Wang.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, T., Chen, X., Yang, K. et al. Theoretical study on rotary-sliding disk triboelectric nanogenerators in contact and non-contact modes. Nano Res. 9, 1057–1070 (2016). https://doi.org/10.1007/s12274-016-0997-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-0997-x

Keywords

Navigation