Skip to main content
Log in

Biomimetic smart nanochannels for power harvesting

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

With the increasing requirements of reliable and environmentally friendly energy resources, porous materials for sustainable energy conversion technologies have attracted intensive interest in the past decades. As an important block of porous materials, biomimetic smart nanochannels (BSN) have been developed rapidly into an attractive field for their well-tunable geometry and chemistry. With inspiration from nature, many works have been reported to utilize BSN to harvest clean energy. In this review, we summarize recent progress in the BSN for power harvesting from four parts of brief introduction of BSN, biological prototypes for power harvesting, BSN-based energy conversion, and conclusion and outlook. Overall, by learning from nature, exploiting new avenues and improving the performance of BSN, a number of exciting developments in the near future may be anticipated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rolison, D. R.; Long, J. W.; Lytle, J. C.; Fischer, A. E.; Rhodes, C. P.; McEvoy, T. M.; Bourga, M. E.; Lubers, A. M. Multifunctional 3D nanoarchitectures for energy storage and conversion. Chem. Soc. Rev. 2009, 38, 226–252.

    Article  Google Scholar 

  2. Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.

    Article  Google Scholar 

  3. Logan, B. E.; Rabaey, K. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 2012, 337, 686–690.

    Article  Google Scholar 

  4. Chen, J.; Cheng, F. Y. Combination of lightweight elements and nanostructured materials for batteries. Acc. Chem. Res. 2009, 42, 713–723.

    Article  Google Scholar 

  5. Zhang, Q. F.; Uchaker, E.; Candelaria, S. L.; Cao, G. Z. Nanomaterials for energy conversion and storage. Chem. Soc. Rev. 2013, 42, 3127–3171.

    Article  Google Scholar 

  6. Andrieu-Brunsen, A.; Micoureau, S.; Tagliazucchi, M.; Szleifer, I.; Azzaroni, O.; Soler-Illia, G. J. A. A. Mesoporous hybrid thin film membranes with PMETAC@silica architectures: Controlling ionic gating through the tuning of polyelectrolyte density. Chem. Mater. 2015, 27, 808–821.

    Article  Google Scholar 

  7. Hou, X.; Liu, Y. J.; Dong, H.; Yang, F.; Li, L.; Jiang, L. A pH-gating ionic transport nanodevice: A symmetric chemical modification of single nanochannels. Adv. Mater. 2010, 22, 2440–2443.

    Article  Google Scholar 

  8. Zhou, Y. H.; Guo, W.; Cheng, J. S.; Liu, Y.; Li, J. H.; Jiang, L. High-temperature gating of solid-state nanopores with thermo-responsive macromolecular nanoactuators in ionic liquids. Adv. Mater. 2012, 24, 962–967.

    Article  Google Scholar 

  9. Yameen, B.; Ali, M.; Neumann, R.; Ensinger, W.; Knoll, W.; Azzaroni, O. Ionic transport through single solid-state nanopores controlled with thermally nanoactuated macromolecular gates. Small 2009, 5, 1287–1291.

    Article  Google Scholar 

  10. Xiao, K.; Xie, G. H.; Li, P.; Liu, Q.; Hou, G. L.; Zhang, Z.; Ma, J.; Tian, Y.; Wen, L. P.; Jiang, L. A biomimetic multistimuli- response ionic gate using a hydroxypyrene derivationfunctionalized asymmetric single nanochannel. Adv. Mater. 2014, 26, 6560–6565.

    Article  Google Scholar 

  11. Vlassiouk, I.; Park, C. D.; Vail, S. A.; Gust, D.; Smirnov, S. Control of nanopore wetting by a photochromic spiropyran: A light-controlled valve and electrical switch. Nano. Lett. 2006, 6, 1013–1017.

    Article  Google Scholar 

  12. Liu, Q.; Xiao, K.; Wen, L.; Dong, Y.; Xie, G.; Zhang, Z.; Bo, Z.; Jiang, L. A fluoride-driven ionic gate based on a 4-aminophenylboronic acid-functionalized asymmetric single nano channel. ACS Nano 2014, 8, 12292–12299.

    Article  Google Scholar 

  13. Xie, G.; Xiao, K.; Zhang, Z.; Kong, X.-Y.; Liu, Q.; Li, P.; Wen, L.; Jiang, L. A bioinspired switchable and tunable carbonate-activated nanofluidic diode based on a single nanochannel. Angew. Chem., Int. Ed. 2015, 54, 13664–13668.

    Article  Google Scholar 

  14. Ali, M.; Schiedt, B.; Neumann, R.; Ensinger, W. Biosensing with functionalized single asymmetric polymer nanochannels. Macromol. Biosci. 2010, 10, 28–32.

    Article  Google Scholar 

  15. Xie, G. H.; Tian, W.; Wen, L. P.; Xiao, K.; Zhang, Z.; Liu, Q.; Hou, G. L.; Li, P.; Tian, Y.; Jiang, L. Chiral recognition of L-tryptophan with beta-cyclodextrin-modified biomimetic single nanochannel. Chem. Commun. 2015, 51, 3135–3138.

    Article  Google Scholar 

  16. Hou, X.; Guo, W.; Jiang, L. Biomimetic smart nanopores and nanochannels. Chem. Soc. Rev. 2011, 40, 2385–2401.

    Article  Google Scholar 

  17. Wen, L. P.; Tian, Y.; Ma, J.; Zhai, J.; Jiang, L. Construction of biomimetic smart nanochannels with polymer membranes and application in energy conversion systems. Phys. Chem. Chem. Phys. 2012, 14, 4027–4042.

    Article  Google Scholar 

  18. Howorka, S.; Siwy, Z. S. Nanopore analytics: Sensing of single molecules. Chem. Soc. Rev. 2009, 38, 2360–2384.

    Article  Google Scholar 

  19. Venkatesan, B. M.; Bashir, R. Nanopore sensors for nucleic acid analysis. Nat. Nanotechnol. 2011, 6, 615–624.

    Article  Google Scholar 

  20. Wen, L.; Jiang, L. Construction of biomimetic smart nanochannels for confined water. Natl. Sci. Rev. 2014, 1, 144–156.

    Article  Google Scholar 

  21. Martin, C. R.; Siwy, Z. S. Learning nature's way: Biosensing with synthetic nanopores. Science 2007, 317, 331–332.

    Article  Google Scholar 

  22. Siwy, Z. S.; Howorka, S. Engineered voltage-responsive nanopores. Chem. Soc. Rev. 2010, 39, 1115–1132.

    Article  Google Scholar 

  23. Dekker, C. Solid-state nanopores. Nat. Nanotechnol. 2007, 2, 209–215.

    Article  Google Scholar 

  24. Kühlbrandt, W. Bacteriorhodopsin—The movie. Nature 2000, 406, 569–570.

    Article  Google Scholar 

  25. Jin, Y. D.; Honig, T.; Ron, I.; Friedman, N.; Sheves, M.; Cahen, D. Bacteriorhodopsin as an electronic conduction medium for biomolecular electronics. Chem. Soc. Rev. 2008, 37, 2422–2432.

    Article  Google Scholar 

  26. Marx, D. Proton transfer 200 years after von grotthuss: Insights from ab initio simulations. Chemphyschem 2006, 7, 1848–1870.

    Article  Google Scholar 

  27. Mohammed, O. F.; Pines, D.; Dreyer, J.; Pines, E.; Nibbering, E. T. J. Sequential proton transfer through water bridges in acid-base reactions. Science 2005, 310, 83–86.

    Article  Google Scholar 

  28. Frigaard, N. U.; Martinez, A.; Mincer, T. J.; DeLong, E. F. Proteorhodopsin lateral gene transfer between marine planktonic bacteria and archaea. Nature 2006, 439, 847–850.

    Article  Google Scholar 

  29. Béjà, O.; Aravind, L.; Koonin, E. V.; Suzuki, M. T.; Hadd, A.; Nguyen, L. P.; Jovanovich, S. B.; Gates, C. M.; Feldman, R. A.; Spudich, J. L. et al. Bacterial rhodopsin: Evidence for a new type of phototrophy in the sea. Science 2000, 289, 1902–1906.

    Article  Google Scholar 

  30. Altamirano, M. Electrical properties of the innervated membrane of the electroplax of electric eel. J. Cell. Compar. Physiol. 1955, 46, 249–277.

    Article  Google Scholar 

  31. Thornhill, W. B.; Watanabe, I.; Sutachan, J. J.; Wu, M. B.; Wu, X.; Zhu, J.; Recio-Pinto, E. Molecular cloning and expression of a Kv1.1-like potassium channel from the electric organ of electrophorus electricus. J. Membrane. Biol. 2003, 196, 1–8.

    Article  Google Scholar 

  32. Xu, J.; Lavan, D. A. Designing artificial cells to harness the biological ion concentration gradient. Nat. Nanotechnol. 2008, 3, 666–670.

    Article  Google Scholar 

  33. Rosenberg, R. L.; Tomiko, S. A.; Agnew, W. S. Singlechannel properties of the reconstituted voltage-regulated Na channel isolated from the electroplax of electrophorus electricus. Proc. Natl. Acad. Sci. USA 1984, 81, 5594–5598.

    Article  Google Scholar 

  34. Tóth, B. I.; Oláh, A.; Szöellosi, A. G.; Bíró, T. TRP channels in the skin. Brit. J. Pharmacol. 2014, 171, 2568–2581.

    Article  Google Scholar 

  35. Lumpkin, E. A.; Caterina, M. J. Mechanisms of sensory transduction in the skin. Nature 2007, 445, 858–865.

    Article  Google Scholar 

  36. Talavera, K.; Nilius, B.; Voets, T. Neuronal TRP channels: Thermometers, pathfinders and life-savers. Trends Neurosci. 2008, 31, 287–295.

    Article  Google Scholar 

  37. Sokolov, A. N.; Tee, B. C. K.; Bettinger, C. J.; Tok, J. B. H.; Bao, Z. Chemical and engineering approaches to enable organic field-effect transistors for electronic skin applications. Acc. Chem. Res. 2012, 45, 361–371.

    Article  Google Scholar 

  38. Chou, H. H.; Nguyen, A.; Chortos, A.; To, J. W. F.; Lu, C.; Mei, J.; Kurosawa, T.; Bae, W. G.; Tok, J. B. H.; Bao, Z. A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing. Nat. Commun. 2015, 6, 8011.

  39. Tee, B. C. K.; Chortos, A.; Berndt, A.; Nguyen, A. K.; Tom, A.; McGuire, A.; Lin, Z. C.; Tien, K.; Bae, W. G.; Wang, H. et al. A skin-inspired organic digital mechanoreceptor. Science 2015, 350, 313–316.

    Article  Google Scholar 

  40. Robertson, B.; Lukashev, E. P. Rapid pH change due to bacteriorhodopsin measured with a tin-oxide electrode. Biophys. J. 1995, 68, 1507–1517.

    Article  Google Scholar 

  41. Miyasaka, T.; Atake, T.; Watanabe, T. Generation of photoinduced steady current by purple membrane Langmuir–Blodgett films at electrode-electrolyte interface. Chem. Lett. 2003, 32, 144–145.

    Article  Google Scholar 

  42. Miyasaka, T.; Koyama, K. Generation of faradaic photocurrents at the bacteriorhodopsin film electrodeposited on a platinum electrode. Electrochemistry 2000, 68, 865–868.

    Google Scholar 

  43. Saga, Y.; Watanabe, T.; Koyama, K.; Miyasaka, T. Mechanism of photocurrent generation from bacteriorhodopsin on gold electrodes. J. Phys. Chem. B 1999, 103, 234–238.

    Article  Google Scholar 

  44. Horn, C.; Steinem, C. Photocurrents generated by bacteriorhodopsin adsorbed on nano-black lipid membranes. Biophys. J. 2005, 89, 1046–1054.

    Article  Google Scholar 

  45. Rao, S. Y.; Si, K. J.; Yap, L. W.; Xiang, Y.; Cheng, W. L. Free-standing bilayered nanoparticle superlattice nanosheets with asymmetric ionic transport behaviors. ACS Nano 2015, 9, 11218–11224.

    Article  Google Scholar 

  46. Guo, Z. B.; Liang, D. W.; Rao, S. Y.; Xiang, Y. Heterogeneous bacteriorhodopsin/gold nanoparticle stacks as a photovoltaic system. Nano Energy 2015, 11, 654–661.

    Article  Google Scholar 

  47. Rao, S. Y.; Guo, Z. B.; Liang, D. W.; Chen, D. L.; Li, Y.; Xiang, Y. 3D proton transfer augments bio-photocurrent generation. Adv. Mater. 2015, 27, 2668–2673.

    Article  Google Scholar 

  48. van der Heyden, F. H. J.; Stein, D.; Dekker, C. Streaming currents in a single nanofluidic channel. Phys. Rev. Lett. 2005, 95, 116104.

    Article  Google Scholar 

  49. van der Heyden, F. H. J.; Bonthuis, D. J.; Stein, D.; Meyer, C.; Dekker, C. Electrokinetic energy conversion efficiency in nanofluidic channels. Nano. Lett. 2006, 6, 2232–2237.

    Article  Google Scholar 

  50. van der Heyden, F. H.; Bonthuis, D. J.; Stein, D.; Meyer, C.; Dekker, C. Power generation by pressure-driven transport of ions in nanofluidic channels. Nano. Lett. 2007, 7, 1022–1025.

    Article  Google Scholar 

  51. Guo, W.; Cheng, C.; Wu, Y. Z.; Jiang, Y.; Gao, J.; Li, D.; Jiang, L. Bio-inspired two-dimensional nanofluidic generators based on a layered graphene hydrogel membrane. Adv. Mater. 2013, 25, 6064–6068.

    Article  Google Scholar 

  52. Guo, W.; Jiang, L. Two-dimensional ion channel based softmatter piezoelectricity. Sci. China Mater. 2014, 57, 2–6.

    Article  Google Scholar 

  53. Zhang, L.; Chen, X. D. Nanofluidics for giant power harvesting. Angew. Chem., Int. Ed. 2013, 52, 7640–7641.

    Article  Google Scholar 

  54. Ramon, G. Z.; Feinberg, B. J.; Hoek, E. M. V. Membranebased production of salinity-gradient power. Energ. Environ. Sci. 2011, 4, 4423–4434.

    Article  Google Scholar 

  55. Sparreboom, W.; van den Berg, A.; Eijkel, J. C. T. Principles and applications of nanofluidic transport. Nat. Nanotechnol. 2009, 4, 713–720.

    Article  Google Scholar 

  56. Weinstein, J. N.; Leitz, F. B. Electric power from differences in salinity: The dialytic battery. Science 1976, 191, 557–559.

    Article  Google Scholar 

  57. Siwy, Z. S.; Kosinska, I. D.; Fulinski, A.; Martin, C. R. Asymmetric diffusion through synthetic nanopores. Phys. Rev. Lett. 2005, 94, 048102.

    Article  Google Scholar 

  58. Guo, W.; Cao, L. X.; Xia, J. C.; Nie, F. Q.; Ma, W.; Xue, J. M.; Song, Y. L.; Zhu, D. B.; Wang, Y. G.; Jiang, L. Energy harvesting with single-ion-selective nanopores: A concentration-gradient-driven nanofluidic power source. Adv. Funct. Mater. 2010, 20, 1339–1344.

    Article  Google Scholar 

  59. Xie, Y. B.; Wang, X. W.; Xue, J. M.; Jin, K.; Chen, L.; Wang, Y. G. Electric energy generation in single track-etched nanopores. Appl. Phys. Lett. 2008, 93, 163116.

    Article  Google Scholar 

  60. Ahualli, S.; Jiménez, M. L.; Fernández, M. M.; Iglesias, G.; Brogioli, D.; Delgado, Á. V. Polyelectrolyte-coated carbons used in the generation of blue energy from salinity differences. Phys. Chem. Chem. Phys. 2014, 16, 25241–25246.

    Article  Google Scholar 

  61. Schoch, R. B.; Han, J.; Renaud, P. Transport phenomena in nanofluidics. Rev. Mod. Phys. 2008, 80, 839–883.

    Article  Google Scholar 

  62. Fan, R.; Huh, S.; Yan, R. X.; Arnold, J.; Yang, P. D. Gated proton transport in aligned mesoporous silica films. Nat. Mater. 2008, 7, 303–307.

    Article  Google Scholar 

  63. Gao, J.; Guo, W.; Feng, D.; Wang, H. T.; Zhao, D. Y.; Jiang, L. High-performance ionic diode membrane for salinity gradient power generation. J. Am. Chem. Soc. 2014, 136, 12265–12272.

    Article  Google Scholar 

  64. Zhang, Z.; Kong, X. Y.; Xiao, K.; Liu, Q.; Xie, G. H.; Li, P.; Ma, J.; Tian, Y.; Wen, L. P.; Jiang, L. Engineered asymmetric heterogeneous membrane: A concentration-gradient-driven energy harvesting device. J. Am. Chem. Soc. 2015, 137, 14765–14772.

    Article  Google Scholar 

  65. Gust, D.; Moore, T. A.; Moore, A. L. Mimicking photosynthetic solar energy transduction. Acc. Chem. Res. 2001, 34, 40–48.

    Article  Google Scholar 

  66. Xie, X. J.; Crespo, G. A.; Mistlberger, G.; Bakker, E. Photocurrent generation based on a light-driven proton pump in an artificial liquid membrane. Nat. Chem. 2014, 6, 202–207.

    Article  Google Scholar 

  67. Xie, X. J.; Bakker, E. Creating electrochemical gradients by light: From bio-inspired concepts to photoelectric conversion. Phys. Chem. Chem. Phys. 2014, 16, 19781–19789.

    Article  Google Scholar 

  68. Blankenship, R. E.; Tiede, D. M.; Barber, J.; Brudvig, G. W.; Fleming, G.; Ghirardi, M.; Gunner, M. R.; Junge, W.; Kramer, D. M.; Melis, A. et al. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 2011, 332, 805–809.

    Article  Google Scholar 

  69. Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. Hybrid nanorodpolymer solar cells. Science 2002, 295, 2425–2427.

    Article  Google Scholar 

  70. Yella, A.; Lee, H. W.; Tsao, H. N.; Yi, C. Y.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W. G.; Yeh, C. Y.; Zakeeruddin, S. M.; Grätzel, M. Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 2011, 334, 629–634.

    Article  Google Scholar 

  71. Wen, L. P.; Hou, X.; Tian, Y.; Zhai, J.; Jiang, L. Bio-inspired photoelectric conversion based on smart-gating nanochannels. Adv. Funct. Mater. 2010, 20, 2636–2642.

    Article  Google Scholar 

  72. Wen, L. P.; Tian, Y.; Guo, Y. L.; Ma, J.; Liu, W. D.; Jiang, L. Conversion of light to electricity by photoinduced reversible pH changes and biomimetic nanofluidic channels. Adv. Funct. Mater. 2013, 23, 2887–2893.

    Article  Google Scholar 

  73. Meng, Z. Y.; Bao, H.; Wang, J. T.; Jiang, C. D.; Zhang, M. H.; Zhai, J.; Jiang, L. Artificial ion channels regulating light-induced ionic currents in photoelectrical conversion systems. Adv. Mater. 2014, 26, 2329–2334.

    Article  Google Scholar 

  74. Zhang, Q. Q.; Liu, Z. Y.; Zhai, J. Photocurrent generation in a light-harvesting system with multifunctional artificial nanochannels. Chem. Commun. 2015, 51, 12286–12289.

    Article  Google Scholar 

  75. Rao, S. Y.; Lu, S. F.; Guo, Z. B.; Li, Y.; Chen, D. L.; Xiang, Y. A light-powered bio-capacitor with nanochannel modulation. Adv. Mater. 2014, 26, 5846–5850.

    Article  Google Scholar 

  76. Zhao, F.; Cheng, H. H.; Zhang, Z. P.; Jiang, L.; Qu, L. T. Direct power generation from a graphene oxide film under moisture. Adv. Mater. 2015, 27, 4351–4357.

    Article  Google Scholar 

  77. Siria, A.; Poncharal, P.; Biance, A. L.; Fulcrand, R.; Blase, X.; Purcell, S. T.; Bocquet, L. Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube. Nature 2013, 494, 455–458.

    Article  Google Scholar 

  78. Dai, L. M. Functionalization of graphene for efficient energy conversion and storage. Acc. Chem. Res. 2013, 46, 31–42.

    Article  Google Scholar 

  79. Jain, T. R.; Rasera, B. C.; Guerrero, R. J. S.; Boutilier, M. S. H.; O’ Hern, S. C.; Idrobo, J. C.; Karnik, R. Heterogeneous sub-continuum ionic transport in statistically isolated graphene nanopores. Nat. Nanotechnol. 2015, 10, 1053–1057.

    Article  Google Scholar 

  80. Bonaccorso, F.; Colombo, L.; Yu, G.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R. S.; Pellegrini, V. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 2015, 347, 1246501.

    Article  Google Scholar 

  81. Hu, C. G.; Song, L.; Zhang, Z. P.; Chen, N.; Feng, Z. H.; Qu, L. T. Tailored graphene systems for unconventional applications in energy conversion and storage devices. Energ. Environ. Sci. 2015, 8, 31–54.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liping Wen or Lei Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, G., Wen, L. & Jiang, L. Biomimetic smart nanochannels for power harvesting. Nano Res. 9, 59–71 (2016). https://doi.org/10.1007/s12274-016-0993-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-0993-1

Keywords

Navigation