Skip to main content
Log in

Hydrogenation of bilayer graphene: A small twist makes a big difference

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The effect of twist angle on the hydrogenation of bilayer graphene (BLG) is systematically explored by density functional theory (DFT) calculations. We found that a twist between the upper and lower layers of the graphene BLGs, either big or small, interferes with the formation of inter-layer C–C covalent bonds and this leads to strong resistance to hydrogenation. In addition, the electronic properties of stable, hydrogenated twisted BLG with different twist angles and degrees of H coverage were investigated. This study paves the way to the selective functionalization of BLG for various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530–1534.

    Article  Google Scholar 

  2. Xu, M. S.; Liang, T.; Shi, M. M.; Chen, H. Z. Graphenelike two-dimensional materials. Chem. Rev. 2013, 113, 3766–3798.

    Article  Google Scholar 

  3. Killi, M.; Wu, S.; Paramekanti, A. Band structures of bilayer graphene superlattices. Phys. Rev. Lett. 2011, 107, 086801.

    Article  Google Scholar 

  4. Balog, R.; Jørgensen, B.; Nilsson, L.; Andersen, M.; Rienks, E.; Bianchi, M.; Fanetti, M.; Lægsgaard, E.; Baraldi, A.; Lizzit, S. et al. Bandgap opening in graphene induced by patterned hydrogen adsorption. Nat. Mater. 2010, 9, 315–319.

    Article  Google Scholar 

  5. Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H. B.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S. Preparation and characterization of graphene oxide paper. Nature 2007, 448, 457–460.

    Article  Google Scholar 

  6. Robinson, J. T.; Burgess, J. S.; Junkermeier, C. E.; Badescu, S. C.; Reinecke, T. L.; Keith, P. F.; Zalalutdniov, M. K.; Baldwin, J. W.; Culbertson, J. C.; Sheehan, P. E. et al. Properties of fluorinated graphene films. Nano Lett. 2010, 10, 3001–3005.

    Article  Google Scholar 

  7. Pujari, B. S.; Gusarov, S.; Brett, M.; Kovalenko, A. Singleside-hydrogenated graphene: Density functional theory predictions. Phys. Rev. B 2011, 84, 041402(R).

    Article  Google Scholar 

  8. Elias, D. C.; Nair, R. R.; Mohiuddin, T. M. G.; Morozov, S. V.; Blake, P.; Halsall, M. P.; Ferrari, A. C.; Boukhvalov, D. W.; Katsnelson, M. I.; Geim, A. K. et al. Control of graphene’s properties by reversible hydrogenation: Evidence for graphane. Science 2009, 323, 610–613.

    Article  Google Scholar 

  9. Sofo, J. O.; Chaudhari, A. S.; Barber, G. D. Graphane: A two-dimensional hydrocarbon. Phys. Rev. B 2007, 75, 153401.

    Article  Google Scholar 

  10. Ryu, S. M.; Han, M. Y.; Maultzsch, J.; Heinz, T. F.; Kim, P.; Steigerwald, M. L.; Brus, L. E. Reversible basal plane hydrogenation of graphene. Nano Lett. 2008, 8, 4597–4602.

    Article  Google Scholar 

  11. Lopes dos Santos, J. M. B.; Peres, N. M. R.; Castro Neto, A. H. Graphene bilayer with a twist: Electronic structure. Phys. Rev. Lett. 2007, 99, 256802.

    Article  Google Scholar 

  12. Zhang, Y. B.; Tang, T. T.; Girit, C.; Hao, Z.; Martin, M. C.; Zettl, A.; Crommie, M. F.; Shen, Y. R.; Wang, F. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 2009, 459, 820–823.

    Article  Google Scholar 

  13. Castro, E. V.; Novoselov, K. S.; Morozov, S. V.; Peres, N. M. R.; Lopes dos Santos, J. M. B.; Nilsson, J.; Guinea, F.; Geim, A. K.; Castro Neto, A. H. Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 2007, 99, 216802.

    Article  Google Scholar 

  14. Kim, K. S.; Walter, A. L.; Moreschini, L.; Seyller, T.; Horn, K.; Rotenberg, E.; Bostwick, A. Coexisting massive and massless Dirac fermions in symmetry-broken bilayer graphene. Nat. Mater. 2013. 12, 887–892.

    Article  Google Scholar 

  15. Latil, S.; Meunier, V.; Henrard, L. Massless fermions in multilayer graphitic systems with misoriented layers: Ab initio calculations and experimental fingerprints. Phys. Rev. B 2007, 76, 201402(R).

    Article  Google Scholar 

  16. Li, G. H.; Luican, A.; Lopes dos Santos, J. M. B.; Castro Neto, A. H.; Reina, A.; Kong, J.; Andrei, E. Y. Observation of Van Hove singularities in twisted graphene layers. Nat. Phys. 2010, 6, 109–113.

    Article  Google Scholar 

  17. Luican, A.; Li, G. H.; Reina, A.; Kong, J.; Nair, R. R.; Novoselov, K. S.; Geim, A. K.; Andrei, E. Y. Single-layer behavior and its breakdown in twisted graphene layers. Phys. Rev. Lett. 2011, 106, 126802.

    Article  Google Scholar 

  18. Lu, C. C.; Lin, Y. C.; Liu, Z.; Yeh, C. H.; Suenaga, K.; Chiu, P. W. Twisting bilayer graphene superlattices. ACS Nano 2013, 7, 2587–2594.

    Article  Google Scholar 

  19. Kim, K.; Coh, S.; Tan, L. Z.; Regan, W.; Yuk, J. M.; Chatterjee, E.; Crommie, M. F.; Cohen, M. L.; Louie, S. G.; Zettl, A. Raman spectroscopy study of rotated double-layer graphene: Misorientation-angle dependence of electronic structure. Phys. Rev. Lett. 2012, 108, 246103.

    Article  Google Scholar 

  20. Carozo, V.; Almeida, C. M.; Ferreira, E. H. M.; Cançado, L. G.; Achete, C. A.; Jorio. A. Raman signature of graphene superlattices. Nano Lett. 2011, 11, 4527–4534.

    Article  Google Scholar 

  21. Leenaerts, O.; Partoens, B.; Peeters, F. M. Hydrogenation of bilayer graphene and the formation of bilayer graphane from first principles. Phys. Rev. B 2009, 80, 245422.

    Article  Google Scholar 

  22. Zhu, L. Y.; Hu, H.; Chen, Q.; Wang, S. D.; Wang, J. L.; Ding, F. Formation and electronic properties of hydrogenated few layer graphene. Nanotechnology 2011, 22, 185202.

    Article  Google Scholar 

  23. Kvashnin, A. G.; Chernozatonskii, L. A.; Yakobson, B. I.; Sorokin, P. B. Phase diagram of quasi-two-dimensional carbon, from graphene to diamond. Nano Lett. 2014, 14, 676–681.

    Article  Google Scholar 

  24. Rajasekaran, S.; Abild-Pedersen, F.; Ogasawara, H.; Nilsson, A.; Kaya, S. Interlayer carbon bond formation induced by hydrogen adsorption in few-layer supported graphene. Phys. Rev. Lett. 2013, 111, 085503.

    Article  Google Scholar 

  25. Ray, N. R.; Datta, J.; Biswas, H. S.; Datta, S. Signature of misoriented bilayer graphenelike and graphanelike structure in the hydrogenated diamond-like carbon film. IEEE Trans. Plasma Sci. 2012, 40, 1789–1793.

    Article  Google Scholar 

  26. Muniz, A. R.; Maroudas, D. Opening and tuning of band gap by the formation of diamond superlattices in twisted bilayer graphene. Phys. Rev. B 2012, 86, 075404.

    Article  Google Scholar 

  27. Luo, Z. Q.; Yu, T.; Kim, K. J.; Ni, Z. H.; You, Y. M; Lim, S. H.; Shen, Z. X.; Wang, S. Z.; Lin, J. Y. Thicknessdependent reversible hydrogenation of graphene layers. ACS Nano 2009, 3, 1781–1788.

    Article  Google Scholar 

  28. Kresse, G.; Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 1993, 48, 13115.

    Article  Google Scholar 

  29. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

    Article  Google Scholar 

  30. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  Google Scholar 

  31. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  Google Scholar 

  32. Kolmogorov, A. N.; Crespi, V. H. Registry-dependent interlayer potential for graphitic systems. Phys. Rev. B. 2005, 71, 235415.

    Article  Google Scholar 

  33. Monkhorst, H. J.; Pack, J. D. Special points for Brillouinzone integrations. Phys. Rev. B. 1976, 13, 5188.

    Article  Google Scholar 

  34. Duplock, E. J.; Scheffler, M.; Lindan, P. J. D. Hallmark of perfect graphene. Phys. Rev. Lett. 2004, 92, 225502.

    Article  Google Scholar 

  35. Samarakoon, D. K.; Wang, X. Q. Tunable band gap in hydrogenated bilayer graphene. ACS Nano 2010, 4, 4126–4130.

    Article  Google Scholar 

  36. Lebègue, S.; Klintenberg, M.; Eriksson, O.; Katsnelson, M. I. Accurate electronic band gap of pure and functionalized graphane from GW calculations. Phys. Rev. B 2009, 79, 245117.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kaili Zhang or Feng Ding.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, J., Zhang, K. & Ding, F. Hydrogenation of bilayer graphene: A small twist makes a big difference. Nano Res. 8, 3887–3897 (2015). https://doi.org/10.1007/s12274-015-0888-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0888-6

Keywords

Navigation