Skip to main content
Log in

Carboxyl groups trigger the activity of carbon nanotube catalysts for the oxygen reduction reaction and agar conversion

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Ozone treatment is a common way to functionalize commercial multi-walled carbon nanotubes (CNTs) with various oxygen functionalities like carboxyl, phenol and lactone groups, in order to enhance their textural properties and chemical activity. In order to detail the effect of each functional group, we correlated the activity with the surface density of each group, and found that the carboxyl groups play a pivotal role in two important catalytic reactions, namely the electrochemical oxygen reduction reaction (ORR) and agar conversion to 5-hydroxymethylfurfural (HMF). During the processes, the hydrophilic surface provides a strong affinity for reaction substrates while the improved porosity allows the efficient diffusion of reactants and products. Furthermore, the activity of functionalized CNTs for agar conversion remained almost unchanged during nine cycles of reaction. This work highlights a strategy for improving the activity of CNTs for electrochemical ORR and agar conversion reactions, as well a promising application of carboxyl-rich CNTs as a solid acid catalyst to produce high-purity HMF—an important chemical intermediate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.

    Article  Google Scholar 

  2. Oberlin, A.; Endo, M.; Koyama, T. Filamentous growth of carbon through benzene decomposition. J. Cryst. Growth 1976, 32, 335–349.

    Article  Google Scholar 

  3. Baughman, R. H.; Zakhidov, A. A.; de Heer, W. A. Carbon nanotubes—the route toward applications. Science 2002, 297, 787–792.

    Article  Google Scholar 

  4. Zhang, J.; Liu, X.; Blume, R.; Zhang, A. H.; Schlögl, R.; Su, D. S. Surface-modified carbon nanotubes catalyze oxidative dehydrogenation of n-Butane. Science 2008, 322, 73–77.

    Article  Google Scholar 

  5. Aguilar, C.; García, R.; Soto-Garrido, G.; Arriagada, R. Catalytic wet air oxidation of aqueous ammonia with activated carbon. Appl. Catal. B 2003, 46, 229–237.

    Article  Google Scholar 

  6. Yang, S. X.; Li, X.; Zhu, W. P.; Wang, J. B.; Descorme, C. Catalytic activity, stability and structure of multi-walled carbon nanotubes in the wet air oxidation of phenol. Carbon 2008, 46, 445–452.

    Article  Google Scholar 

  7. Yeager, E. Dioxygen electrocatalysis: mechanisms in relation to catalyst structure. J. Mol. Catal. 1986, 38, 5–25.

    Article  Google Scholar 

  8. Hossain, M. S.; Tryk, D.; Yeager, E. The electrochemistry of graphite and modified graphite surfaces: the reduction of O2. Electrochim. Acta 1989, 34, 1733–1737.

    Article  Google Scholar 

  9. Sarapuu, A.; Vaik, K.; Schiffrin, D. J.; Tammeveski, K. Electrochemical reduction of oxygen on anthraquinone-modified glassy carbon electrodes in alkaline solution. J. Electroanal. Chem. 2003, 541, 23–29.

    Article  Google Scholar 

  10. Vaik, K.; Sarapuu, A.; Tammeveski, K.; Mirkhalaf, F.; Schiffrin, D. J. Oxygen reduction on phenanthrenequinone-modified glassy carbon electrodes in 0.1 M KOH. J. Electroanal. Chem. 2004, 564, 159–166.

    Article  Google Scholar 

  11. Wang, L.; Zhang, J.; Zhu, L. F.; Meng, X. J.; Xiao, F. S. Efficient conversion of fructose to 5-hydroxymethylfurfural over sulfated porous carbon catalyst. J. Energy Chem. 2013, 22, 241–244.

    Article  Google Scholar 

  12. Liu, R. L.; Chen, J. Z.; Huang, X.; Chen, L. M.; Ma, L. L.; Li, X. J. Conversion of fructose into 5-hydroxymethylfurfural and alkyl levulinates catalyzed by sulfonic acid-functionalized carbon materials. Green Chem. 2013, 15, 2895–2903.

    Article  Google Scholar 

  13. Qi, X. H.; Guo, H. X.; Li, L. Y.; Smith, R. L. Acid-catalyzed dehydration of fructose into 5-hydroxymethylfurfural by cellulose-derived amorphous carbon. ChemSusChem 2012, 5, 2215–2220.

    Article  Google Scholar 

  14. Goertzen, S. L.; Thériault, K. D.; Oickle, A. M.; Tarasuk, A. C.; Andreas, H. A. Standardization of the Boehm titration. part I. CO2 expulsion and endpoint determination. Carbon 2010, 48, 1252–1261.

    Article  Google Scholar 

  15. Oickle, A. M.; Goertzen, S. L.; Hopper, K. R.; Abdalla, Y. O.; Andreas, H. A. Standardization of the Boehm titration: Part II. method of agitation, effect of filtering and dilute titrant. Carbon 2010, 48, 3313–3322.

    Article  Google Scholar 

  16. Najafi, E.; Kim, J. Y.; Han, S. H.; Shin, K. UV-ozone treatment of multi-walled carbon nanotubes for enhanced organic solvent dispersion. Colloids Surf. A 2006, 284, 373–378.

    Article  Google Scholar 

  17. Wang, D. W.; Su, D. S. Heterogeneous nanocarbon materials for oxygen reduction reaction. Energy Environ. Sci. 2014, 7, 576–591.

    Article  Google Scholar 

  18. Álvarez, P. M.; García-Araya, J. F.; Beltrán, F. J.; Masa, F. J.; Medina, F. Ozonation of activated carbons: Effect on the adsorption of selected phenolic compounds from aqueous solutions. J. Colloid Interface Sci. 2005, 283, 503–512.

    Article  Google Scholar 

  19. Razumovskii, S. D.; Gorshenev, V. N.; Kovarskii, A. L.; Kuznetsov, A. M.; Shchegolikhin, A. N. Carbon nanostructure reactivity: Reactions of graphite powders with ozone. Fullerenes, Nanotubes, Carbon Nanostruct. 2007, 15, 53–63.

    Article  Google Scholar 

  20. Chiang, H. L.; Huang, C. P.; Chiang, P. C. The surface characteristics of activated carbon as affected by ozone and alkaline treatment. Chemosphere 2002, 47, 257–265.

    Article  Google Scholar 

  21. Li, F. X.; Wang, Y.; Wang, D. Z.; Wei, F. Characterization of single-wall carbon nanotubes by N2 adsorption. Carbon 2004, 42, 2375–2383.

    Article  Google Scholar 

  22. Gong, K. P.; Du, F.; Xia, Z. H.; Durstock, M.; Dai, L. M. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 2009, 323, 760–764.

    Article  Google Scholar 

  23. Liu, J.; Li, S. G.; Liao, W. B.; Chen, Y. A new europium(III) complex containing a neutral ligand of 2-(pyridin-2-yl)-1H-benzo[d]imidazole: Thermal, electrochemical, luminescent properties. Spectrochim. Acta, Part A 2013, 107, 102–107.

    Article  Google Scholar 

  24. Jeon, I.Y.; Choi, H. J.; Jung, S. M.; Seo, J. M.; Kim, M. J.; Dai, L. M.; Baek, J. B. Large-scale production of edge-selectively functionalized graphene nanoplatelets via ball milling and their use as metal-free electrocatalysts for oxygen reduction reaction. J. Am. Chem. Soc. 2012, 135, 1386–1393.

    Article  Google Scholar 

  25. Liu, Z. Y.; Zhang, G. X.; Lu, Z. Y.; Jin, X.Y.; Chang, Z.; Sun, X. M. One-step scalable preparation of N-doped nanoporous carbon as a high-performance electrocatalyst for the oxygen reduction reaction. Nano Res. 2013, 6, 293–301.

    Article  Google Scholar 

  26. Fu, G. T.; Liu, Z. Y.; Chen, Y.; Lin, J.; Tang, Y. W.; Lu, T. H. Synthesis and electrocatalytic activity of Au@Pd core-shell nanothorns for the oxygen reduction reaction. Nano Res. 2014, 7, 1205–1214.

    Article  Google Scholar 

  27. Neumann, C. M.; Laborda, E.; Tschulik, K.; Ward, K.; Compton, R. Performance of silver nanoparticles in the catalysis of the oxygen reduction reaction in neutral media: Efficiency limitation due to hydrogen peroxide escape. Nano Res. 2013, 6, 511–524.

    Article  Google Scholar 

  28. Si, W. F.; Li, J.; Li, H. Q.; Li, S. S.; Yin, J.; Xu, H.; Guo, X. W.; Zhang, T.; Song, Y. J. Light-controlled synthesis of uniform platinum nanodendrites with markedly enhanced electrocatalytic activity. Nano Res. 2013, 6, 720–725.

    Article  Google Scholar 

  29. Zheng, F. L.; Wong, W. T.; Yung, K. F. Facile design of Au@Pt core-shell nanostructures: Formation of Pt submonolayers with tunable coverage and their applications in electrocatalysis. Nano Res. 2014, 7, 410–417.

    Article  Google Scholar 

  30. Birry, L.; Zagal, J. H.; Dodelet, J. P. Does CO poison Fe-based catalysts for ORR? Electrochem. Commun. 2010, 12, 628–631.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yajie Zhang, Lei Wang or Jian Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Chen, C., Peng, L. et al. Carboxyl groups trigger the activity of carbon nanotube catalysts for the oxygen reduction reaction and agar conversion. Nano Res. 8, 502–511 (2015). https://doi.org/10.1007/s12274-014-0660-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0660-3

Keywords

Navigation