Skip to main content
Log in

Visible-light-driven enhanced antibacterial and biofilm elimination activity of graphitic carbon nitride by embedded Ag nanoparticles

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Semiconductor nanomaterials with photocatalytic activity have potential for many applications. An effective way of promoting photocatalytic activity is depositing noble metal nanoparticles (NPs) on a semiconductor, since the noble metal NPs act as excellent electron acceptors which inhibit the quick recombination of the photoexcited electron-hole pairs and thereby enhance the generation of reactive oxygen species (ROS). Herein, a highly effective platform, graphitic carbon nitride (g-C3N4) nanosheets with embedded Ag nanoparticles (Ag/g-C3N4), was synthesized by a facile route. Under visible light irradiation, the ROS production of Ag/g-C3N4 nanohybrids was greatly improved compared with pristine g-C3N4 nanosheets, and moreover, the nanohybrids showed enhanced antibacterial efficacy and ability to disperse bacterial biofilms. We demonstrate for the first time that the Ag/g-C3N4 nanohybrids are efficient bactericidal agents under visible light irradiation, and can also provide a new way for biofilm elimination. The enhanced antibacterial properties and biofilm-disrupting ability of Ag/g-C3N4 nanohybrids may offer many biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Subbiandoss, G.; Sharifi, S.; Grijpma, D. W.; Laurent, S.; van der Mei, H. C.; Mahmoudi, M.; Busscher, H. J. Magnetic targeting of surface-modified superparamagnetic iron oxide nanoparticles yields antibacterial efficacy against biofilms of gentamicin-resistant staphylococci. Acta Biomater. 2012, 8, 2047–2055.

    Article  Google Scholar 

  2. McDougald, D.; Rice, S. A.; Barraud, N.; Steinberg, P. D.; Kjelleberg, S. Should we stay or should we go: Mechanisms and ecological consequences for biofilm dispersal. Nat. Rev. Micro. 2012, 10, 39–50.

    Google Scholar 

  3. Gao, L. Z; Giglio, K. M.; Nelson, J. L.; Sondermann, H.; Travis, A. J. Ferromagnetic nanoparticles with peroxidase-like activity enhance the cleavage of biological macromolecules for biofilm elimination. Nanoscale. 2014, 6, 2588–2593.

    Article  Google Scholar 

  4. Rizzello, L.; Pompa, P. P. Nanosilver-based antibacterial drugs and devices: Mechanisms, methodological drawbacks, and guidelines. Chem. Soc. Reviews. 2014, 43, 1501–1518.

    Article  Google Scholar 

  5. Aruguete, D. M.; Kim, B.; Hochella, M. F.; Ma, Y. J.; Cheng, Y. W.; Hoegh, A.; Liu, J.; Pruden, A. Antimicrobial nanotechnology: Its potential for the effective management of microbial drug resistance and implications for research needs in microbial nanotoxicology. Environ. Sci.:Processes Impacts. 2013, 15, 93–102.

    Google Scholar 

  6. He, W. W.; Kim, H. K.; Wamer, W. G.; Melka, D.; Callahan J. H.; Yin, J. J. Photogenerated reactive oxygen species and charge carriers in ZnO/Au hybrid nanostructures are correlated with enhanced photocatalytic and antibacterial activity. J. Am. Chem. Soc. 2014, 136, 750–757.

    Article  Google Scholar 

  7. Zhang, H. J.; Chen, G. H. Potent antibacterial activities of Ag/TiO2 nanocomposite powders synthesized by a one-pot sol-gel method. Environ. Sci. Technol. 2009, 43, 2905–2910.

    Article  Google Scholar 

  8. Huang, J. H.; Ho, W.; Wang, X. C. Metal-free disinfection effect induced by graphitic carbon nitride polymers with visible light illumination. Chem. Commun. 2014, 50, 4338–4340.

    Article  Google Scholar 

  9. Lin, L. S.; Cong, Z. X.; Li, J.; Ke, K. M.; Guo, S. S.; Yang, H. H.; Chen, G. N. Graphitic-phase C3N4 nanosheets as efficient photosensitizers and pH-responsive drug nanocarriers for cancer imaging and therapy. J. Mater. Chem. B. 2014, 2, 1031–1037.

    Article  Google Scholar 

  10. Niu, P.; Zhang, L. L.; Liu, G.; Cheng, H. M. Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater. 2012, 22, 4763–4770.

    Article  Google Scholar 

  11. Wang, W. J.; Yu, J. C.; Xia, D. H.; Wong, P. K.; Li, Y. C. Graphene and g-C3N4 nanosheets cowrapped elemental α-sulfur as a novel metal-free heterojunction photocatalyst for bacterial inactivation under visible-light. Environ. Sci. Technol. 2013, 47, 8724–8732.

    Google Scholar 

  12. Atwater, H. A.; Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 2010, 9, 205–213.

    Article  Google Scholar 

  13. Liu, Z. W.; Hou, W. B.; Pavaskar, P.; Aykol, M.; Cronin, S. B. Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. Nano Lett. 2011, 11, 1111–1116.

    Article  Google Scholar 

  14. Mubeen, S.; Lee, J.; Singh, N.; Kramer, S.; Stucky G. D.; Moskovits, M. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat. Nanotechnol. 2013, 8, 247–251.

    Article  Google Scholar 

  15. Dukovic, G.; Merkle, M. G.; Nelson, J. H.; Hughes S. M.; Alivisatos, A. P. Photodeposition of Pt on colloidal CdS and CdSe/CdS semiconductor nanostructures. Adv. Mater. 2008, 20, 4306–4311.

    Article  Google Scholar 

  16. Fan, F. R.; Ding, Y.; Liu, D. Y.; Tian, Z. Q.; Wang, Z. L. Facet-selective epitaxial growth of heterogeneous nanostructures of semiconductor and metal: ZnO nanorods on Ag nanocrystals. J. Am. Chem. Soc. 2009, 131, 12036–12037.

    Article  Google Scholar 

  17. Zhou, W.; Li, T.; Wang, J. Q.; Qu, Y.; Pan, K.; Xie, Y.; Tian, G. H.; Wang, L.; Ren, Z. Y.; Jiang, B. J. et al. Composites of small Ag clusters confined in the channels of well-ordered mesoporous anatase TiO2 and their excellent solar-light-driven photocatalytic performance. Nano. Res. 2014, 7, 731–742.

    Article  Google Scholar 

  18. Bu, Y. Y.; Chen, Z. Y.; Li, W. B. Using electrochemical methods to study the promotion mechanism of the photoelectric conversion performance of Ag-modified mesoporous g-C3N4 heterojunction material. Appl. Catal. B-Environ. 2014, 144, 622–630.

    Article  Google Scholar 

  19. Xie, F.; Pang, J. S.; Centeno, A.; Ryan, M. P.; Riley, D. J.; Alford, N. M. Nanoscale control of Ag nanostructures for plasmonic fluorescence enhancement of near-infrared dyes. Nano. Res. 2013, 6, 496–510.

    Article  Google Scholar 

  20. Chen, X. F.; Zhang, J. S.; Fu, X. Z.; Antonietti, M.; Wang, X. C. Fe-g-C3N4-catalyzed oxidation of benzene to phenol using hydrogen peroxide and visible light. J. Am. Chem. Soc. 2009, 131, 11658–11659.

    Article  Google Scholar 

  21. Zhang, X. D.; Xie, X.; Wang, H.; Zhang, J. J.; Pan, B. C.; Xie, Y. Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J. Am. Chem. Soc. 2013, 135, 18–21.

    Article  Google Scholar 

  22. Sun, H. J.; Gao, N.; Dong, K.; Ren, J. S.; Qu, X. G. Graphene quantum dots-band-aids used for wound disinfection. ACS Nano. 2014, 8, 6202–6210.

    Article  Google Scholar 

  23. Amorena, B.; Gracia, E.; Monzón, M.; Leiva, J.; Oteiza, C.; Pérez, M.; Alabart, J. L.; Hernández-Yago, J. Antibiotic susceptibility assay for Staphylococcus aureus in biofilms developed in vitro. J. Antimicrob. Chemother. 1999, 44, 43–55.

    Article  Google Scholar 

  24. Barraud, N.; Kardak, B. G.; Yepuri, N. R.; Howlin, R. P.; Webb, J. S.; Faust, S. N.; Kjelleberg, S.; Rice, S. A.; Kelso, M. J. Cephalosporin-3′-diazeniumdiolates: Targeted NO-donor prodrugs for dispersing bacterial biofilms. Angew. Chem. 2012, 51, 9057–9060.

    Article  Google Scholar 

  25. Peeters, E.; Nelis, H. J.; Coenye, T. Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. J. Microbiol. Methods. 2008, 72, 157–165.

    Article  Google Scholar 

  26. Li, M.; Liu, Z.; Ren, J. S.; Qu, X. G. Inhibition of metal-induced amyloid aggregation using light-responsive magnetic nanoparticle prochelator conjugates. Chem. Sci. 2012, 3, 868–873.

    Article  Google Scholar 

  27. Li, X. H.; Wang X. C.; Antonietti, M. Mesoporous g-C3N4 nanorods as multifunctional supports of ultrafine metal nanoparticles: Hydrogen generation from water and reduction of nitrophenol with tandem catalysis in one step. Chem. Sci. 2012, 3, 2170–2174.

    Article  Google Scholar 

  28. Djokovic, V.; Krsmanovic, R.; Bozanic, D. K.; McPherson, M.; Van Tendeloo, G.; Nair, P. S.; Georges M. K.; Radhakrishnan, T. Adsorption of sulfur onto a surface of silver nanoparticles stabilized with sago starch biopolymer. Colloid Surface B. 2009, 73, 30–35.

    Article  Google Scholar 

  29. Pang, M. L.; Hu J. Y.; Zeng, H. C. Synthesis, morphological control, and antibacterial properties of hollow/solid Ag2S/Ag heterodimers. J. Am. Chem. Soc. 2010, 132, 10771–10785.

    Article  Google Scholar 

  30. Ge, L.; Han, C. C.; Liu, J.; Li, Y. F. Enhanced visible light photocatalytic activity of novel polymeric g-C3N4 loaded with Ag nanoparticles. Appl. Catal. A-Gen. 2011, 409, 215–222.

    Article  Google Scholar 

  31. Li, X. F.; Zhang, J.; Shen, L. H.; Ma, Y. M.; Lei, W. W.; Cui, Q. L.; Zou, G. T. Preparation and characterization of graphitic carbon nitride through pyrolysis of melamine. Appl. Phys. A-Mater. 2009, 94, 387–392.

    Article  Google Scholar 

  32. Thomas, A.; Fischer, A.; Goettmann, F.; Antonietti, M.; Muller, J. O.; Schlogl, R.; Carlsson, J. M. Graphitic carbon nitride materials: Variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem. 2008, 18, 4893–4908.

    Article  Google Scholar 

  33. Doty, R. C.; Tshikhudo, T. R.; Brust M.; Fernig, D. G. Extremely stable water-soluble Ag nanoparticles. Chem. Mater. 2005, 17, 4630–4635.

    Article  Google Scholar 

  34. Zhu, Z. J.; Su, M.; Ma, L.; Ma, L.; Liu, D. J.; Wang, Z. X. Preparation of graphene oxide-silver nanoparticle nanohybrids with highly antibacterial capability. Talanta. 2013, 117, 449–455.

    Article  Google Scholar 

  35. Yuan, X.; Setyawati, M. I.; Leong, D. T.; Xie, J. P. Ultrasmall Ag+-rich nanoclusters as highly efficient nanoreservoirs for bacterial killing. Nano. Res. 2014, 7, 301–307.

    Article  Google Scholar 

  36. Ashkarran, A. A.; Ghavami, M.; Aghaverdi, H.; Stroeve, P.; Mahmoudi, M. Bacterial effects and protein corona evaluations: Crucial ignored factors in the prediction of bio-efficacy of various forms of silver nanoparticles. Chem. Res. Toxicol. 2012, 25, 1231–1242.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaogang Qu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bing, W., Chen, Z., Sun, H. et al. Visible-light-driven enhanced antibacterial and biofilm elimination activity of graphitic carbon nitride by embedded Ag nanoparticles. Nano Res. 8, 1648–1658 (2015). https://doi.org/10.1007/s12274-014-0654-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0654-1

Keywords

Navigation