Skip to main content
Log in

Improving the electrochemical performance of Fe3O4 nanoparticles via a double protection strategy through carbon nanotube decoration and graphene networks

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Iron oxide is a promising anode material for lithium ion batteries, but it usually exhibits poor electrochemical property because of its poor conductivity and large volume variation during the lithium uptake and release processes. In this work, a double protection strategy for improving electrochemical performance of Fe3O4 nanoparticles through the use of decoration with multi-walled carbon nanotubes and reduced graphene oxides networks has been developed. The resulting MWCNTs-Fe3O4-rGO nanocomposites exhibited excellent cycling performance and rate capability in comparison with MWCNTs-Fe3O4, MWCNTs-Fe3O4 physically mixed with rGO, and Fe3O4-rGO. A reversible capacity of ∼680 mA·h·g−1 can be maintained after 100 cycles under a current density of 200 mA·g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, Z.; Zhou, L.; Lou, X. W. Metal oxide hollow nanostructures for lithium-ion batteries. Adv. Mater. 2012, 24, 1903–1911.

    Article  Google Scholar 

  2. Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

    Article  Google Scholar 

  3. Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496–499.

    Article  Google Scholar 

  4. Xu, S.; Hessel, C. M.; Ren, H.; Yu, R.; Jin, Q.; Yang, M.; Zhao, H.; Wang, D. α-Fe2O3 multi-shelled hollow microspheres for lithium ion battery anodes with superior capacity and charge retention. Energy Environ. Sci. 2014, 7, 632–637.

    Article  Google Scholar 

  5. Wang, J.; Yang, N.; Tang, H.; Dong, Z.; Jin, Q.; Yang, M.; Kisailus, D.; Zhao, H.; Tang, Z.; Wang, D. Accurate control of multishelled Co3O4 hollow microspheres as high-performance anode materials in lithium-ion batteries. Angew. Chem. Int. Ed. 2013, 52, 6417–6420.

    Article  Google Scholar 

  6. Zhang, L.; Wu, H. B.; Lou, X. W. Iron-oxide-based advanced anode materials for lithium-ion batteries. Adv. Energy Mater. 2014, 4, 1300958.

    Google Scholar 

  7. Chen, Y.; Song, B.; Tang, X.; Lu, L.; Xue, J. Ultrasmall Fe3O4 nanoparticle/MoS2 nanosheet composites with superior performances for lithium ion batteries. Small 2014, 10, 1536–1543.

    Article  Google Scholar 

  8. Chen, D.; Ji, G.; Ma, Y.; Lee, J. Y.; Lu, J. Graphene-encapsulated hollow Fe3O4 nanoparticle aggregates as a high-performance anode material for lithium ion batteries. ACS Appl. Mater. Interfaces 2011, 3, 3078–3083.

    Article  Google Scholar 

  9. Wang, J.-Z.; Zhong, C.; Wexler, D.; Idris, N. H.; Wang, Z.-X.; Chen, L.-Q.; Liu, H.-K. Graphene-encapsulated Fe3O4 nanoparticles with 3D laminated structure as superior anode in lithium ion batteries. Chem. Eur. J. 2011, 17, 661–667.

    Article  Google Scholar 

  10. Zhou, G.; Wang, D.-W.; Li, F.; Zhang, L.; Li, N.; Wu, Z.-S.; Wen, L.; Lu, G. Q.; Cheng, H.-M. Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem. Mater. 2010, 22, 5306–5313.

    Article  Google Scholar 

  11. Ji, L.; Tan, Z.; Kuykendall, T. R.; Aloni, S.; Xun, S.; Lin, E.; Battaglia, V.; Zhang, Y. Fe3O4 nanoparticle-integrated graphene sheets for high-performance half and full lithium ion cells. Phys. Chem. Chem. Phys. 2011, 13, 7170–7177.

    Article  Google Scholar 

  12. Zhang, M.; Lei, D.; Yin, X.; Chen, L.; Li, Q.; Wang, Y.; Wang, T. Magnetite/graphene composites: Microwave irradiation synthesis and enhanced cycling and rate performances for lithium ion batteries. J. Mater. Chem. 2010, 20, 5538–5543.

    Article  Google Scholar 

  13. Yang, S.; Feng, X.; Ivanovici, S.; Müllen, K. Fabrication of graphene-encapsulated oxide nanoparticles: Towards high-performance anode materials for lithium storage. Angew. Chem. Int. Ed. 2010, 49, 8408–8411.

    Article  Google Scholar 

  14. Wei, W.; Yang, S.; Zhou, H.; Lieberwirth, I.; Feng, X.; Müllen, K. 3D graphene foams cross-linked with pre-encapsulated Fe3O4 nanospheres for enhanced lithium storage. Adv. Mater. 2013, 25, 2909–2914.

    Article  Google Scholar 

  15. Su, Y.; Li, S.; Wu, D.; Zhang, F.; Liang, H.; Gao, P.; Cheng, C.; Feng, X. Two-dimensional carbon-coated graphene/metal oxide hybrids for enhanced lithium storage. ACS Nano 2012, 6, 8349–8356.

    Article  Google Scholar 

  16. Su, J.; Cao, M.; Ren, L.; Hu, C. Fe3O4-graphene nanocomposites with improved lithium storage and magnetism properties. J. Phys. Chem. C 2011, 115, 14469–14477.

    Article  Google Scholar 

  17. Luo, J.; Liu, J.; Zeng, Z.; Ng, C. F.; Ma, L.; Zhang, H.; Lin, J.; Shen, Z.; Fan, H. J. Three-dimensional graphene foam supported Fe3O4 lithium battery anodes with long cycle life and high rate capability. Nano Lett. 2013, 13, 6136–6143.

    Article  Google Scholar 

  18. Li, B.; Cao, H.; Shao, J.; Qu, M.; Warner, J. H. Superparamagnetic Fe3O4 nanocrystals@graphene composites for energy storage devices. J. Mater. Chem. 2011, 21, 5069–5075.

    Article  Google Scholar 

  19. Bhuvaneswari, S.; Pratheeksha, P. M.; Anandan, S.; Rangappa, D.; Gopalan, R.; Rao, T. N. Efficient reduced graphene oxide grafted porous Fe3O4 composite as a high performance anode material for Li-ion batteries. Phys. Chem. Chem. Phys. 2014, 16, 5284–5294.

    Article  Google Scholar 

  20. Sathish, M.; Tomai, T.; Honma, I. Graphene anchored with Fe3O4 nanoparticles as anode for enhanced Li-ion storage. J. Power Sources 2012, 217, 85–91.

    Article  Google Scholar 

  21. Kang, E.; Jung, Y. S.; Cavanagh, A. S.; Kim, G.-H.; George, S. M.; Dillon, A. C.; Kim, J. K.; Lee, J. Fe3O4 nanoparticles confined in mesocellular carbon foam for high performance anode materials for lithium-ion batteries. Adv. Funct. Mater. 2011, 21, 2430–2438.

    Article  Google Scholar 

  22. Wang, L.; Yu, Y.; Chen, P. C.; Zhang, D. W.; Chen, C. H. Electrospinning synthesis of C/Fe3O4 composite nanofibers and their application for high performance lithium-ion batteries. J. Power Sources 2008, 183, 717–723.

    Article  Google Scholar 

  23. Cui, Z.-M.; Jiang, L.-Y.; Song, W.-G.; Guo, Y.-G. High-yield gas-liquid interfacial synthesis of highly dispersed Fe3O4 nanocrystals and their application in lithium-ion batteries. Chem. Mater. 2009, 21, 1162–1166.

    Article  Google Scholar 

  24. Wang, Y.; Zhang, L.; Gao, X.; Mao, L.; Hu, Y.; Lou, X. W. One-pot magnetic field induced formation of Fe3O4/C composite microrods with enhanced lithium storage capability. Small 2014, 10, 2815–2819.

    Article  Google Scholar 

  25. Dai, H. Carbon nanotubes: Synthesis, integration, and properties. Acc. Chem. Res. 2002, 35, 1035–1044.

    Article  Google Scholar 

  26. Baughman, R. H. Carbon nanotubes-the route toward applications. Science 2002, 297, 787–792.

    Article  Google Scholar 

  27. Wang, S.; Yi, L.; Halpert, J. E.; Lai, X.; Liu, Y.; Cao, H.; Yu, R.; Wang, D.; Li, Y. A novel and highly efficient photocatalyst based on P25-graphdiyne nanocomposite. Small 2012, 8, 265–271.

    Article  Google Scholar 

  28. Wassei, J. K.; Kaner, R. B. Oh, the places you’ll go with graphene. Acc. Chem. Res. 2013, 46, 2244–2253.

    Article  Google Scholar 

  29. Huang, X.; Qi, X; Boey, F.; Zhang, H. Graphene-based composites. Chem. Soc. Rev. 2012, 41, 666–686.

    Article  Google Scholar 

  30. Tang, H.; Hessel, C. M.; Wang, J.; Yang, N.; Yu, R.; Zhao, H.; Wang, D. Two-dimensional carbon leading to new photoconversion processes. Chem. Soc. Rev. 2014, 43, 4281–4299.

    Article  Google Scholar 

  31. Tang, H.; Yin, H.; Wang, J.; Yang, N.; Wang, D.; Tang, Z. Molecular architecture of cobalt porphyrin multilayers on reduced graphene oxide sheets for high-performance oxygen reduction reaction. Angew. Chem. Int. Ed. 2013, 52, 5585–5589.

    Article  Google Scholar 

  32. Yang, N.; Liu, Y.; Wen, H.; Tang, Z.; Zhao, H.; Li, Y.; Wang, D. Photocatalytic properties of graphdiyne and graphene modified TiO2: From theory to experiment. ACS Nano 2013, 7, 1504–1512.

    Article  Google Scholar 

  33. Cheng, J.; Wang, B.; Park, C.-M.; Wu, Y.; Huang, H; Nie, F. CNT@Fe3O4@C coaxial nanocables: One-pot, additive-free synthesis and remarkable lithium storage behavior. Chem. Eur. J. 2013, 19, 9866–9874.

    Article  Google Scholar 

  34. Ban, C.; Wu, Z.; Gillaspie, D. T.; Chen, L.; Yan, Y.; Blackburn, J. L.; Dillon, A. C. Nanostructured Fe3O4/SWNT electrode: Binder-free and high-rate Li-ion anode. Adv. Mater. 2010, 22, E145–E149.

    Article  Google Scholar 

  35. Jian, Z.; Liu, P.; Li, F.; He, P.; Guo, X.; Chen, M.; Zhou, H. Core-shell-structured CNT@RuO2 composite as a high-performance cathode catalyst for rechargeable Li-O2 batteries. Angew. Chem. Int. Ed. 2013, 53, 442–446.

    Article  Google Scholar 

  36. Shi, Q.; Peng, F.; Liao, S.; Wang, H.; Yu, H.; Liu, Z.; Zhang, B.; Su, D. S. Sulfur and nitrogen co-doped carbon nanotubes for enhancing electrochemical oxygen reduction activity in acidic and alkaline media. J. Mater. Chem. A 2013, 1, 14853–14857.

    Article  Google Scholar 

  37. Chen, C.; Zhang, J.; Zhang, B.; Yu, C.; Peng, F.; Su, D. Revealing the enhanced catalytic activity of nitrogen-doped carbon nanotubes for oxidative dehydrogenation of propane. Chem. Commun. 2013, 49, 8151–8153.

    Article  Google Scholar 

  38. Cao, C.-Y.; Wei, F.; Qu, J.; Song, W.-G. Programmed synthesis of magnetic magnesium silicate nanotubes with high adsorption capacities for lead and cadmium ions. Chem. Eur. J. 2013, 19, 1558–1562.

    Article  Google Scholar 

  39. Fujii, T.; de Groot, F. M. F.; Sawatzky, G. A.; Voogt, F. C.; Hibma, T.; Okada, K. In situ XPS analysis of various iron oxide films grown by NO2-assisted molecular-beam epitaxy. Phys. Rev. B 1999, 59, 3195–3202.

    Article  Google Scholar 

  40. Arif Sher Shah, M. S.; Zhang, K.; Park, A. R.; Kim, K. S.; Park, N.-G.; Park, J. H.; Yoo, P. J. Single-step solvothermal synthesis of mesoporous Ag-TiO2-reduced graphene oxide ternary composites with enhanced photocatalytic activity. Nanoscale 2013, 5, 5093–5101.

    Article  Google Scholar 

  41. Yu, Y.; Sun, Y.; Cao, C.; Yang, S.; Liu, H.; Li, P.; Huang, P.; Song, W. Graphene-based composite supercapacitor electrodes with diethylene glycol as inter-layer spacer. J. Mater. Chem. A 2014, 2, 7706–7710.

    Article  Google Scholar 

  42. Li, B.; Cao, H.; Shao, J.; Qu, M. Enhanced anode performances of the Fe3O4-carbon-rGO three dimensional composite in lithium ion batteries. Chem. Commun. 2011, 47, 10374–10376.

    Article  Google Scholar 

  43. Tu, W.; Zhou, Y.; Zou, Z. Versatile graphene-promoting photocatalytic performance of semiconductors: Basic principles, synthesis, solar energy conversion, and environmental applications. Adv. Funct. Mater. 2013, 23, 4996–5008.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changyan Cao or Weiguo Song.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Cao, C., Li, G. et al. Improving the electrochemical performance of Fe3O4 nanoparticles via a double protection strategy through carbon nanotube decoration and graphene networks. Nano Res. 8, 1339–1347 (2015). https://doi.org/10.1007/s12274-014-0625-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0625-6

Keywords

Navigation