Skip to main content
Log in

Wrinkle-free graphene with spatially uniform electrical properties grown on hot-pressed copper

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The chemical vapor deposition (CVD) of graphene on Cu substrates enables the fabrication of large-area monolayer graphene on desired substrates. However, during the transfer of the synthesized graphene, topographic defects are unavoidably formed along the Cu grain boundaries, degrading the electrical properties of graphene and increasing the device-to-device variability. Here, we introduce a method of hot-pressing as a surface pre-treatment to improve the thermal stability of Cu thin film for the suppression of grain boundary grooving. The flattened Cu thin film maintains its smooth surface even after the subsequent high temperature CVD process necessary for graphene growth, and the formation of graphene without wrinkles is realized. Graphene field effect transistors (FETs) fabricated using the graphene synthesized on hot-pressed Cu thin film exhibit superior field effect mobility and significantly reduced device-to-device variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu, K; Cao, P.; Heath, J. R. Scanning tunneling microscopy characterization of the electrical properties of wrinkles in exfoliated graphene monolayers. Nano Lett. 2009, 9, 4446–4451.

    Article  Google Scholar 

  2. Ahmad, M.; Han, S. A.; Tien, D. H.; Jung, J.; Seo, Y. Local conductance measurement of graphene layer using conductive atomic force microscopy. J. Appl. Phys. 2011, 110, 054307.

    Article  Google Scholar 

  3. Franklin, A. D.; Han, S.-J.; Bol, A. A.; Haensch, W. Effects of nanoscale contacts to graphene. IEEE Elec. Dev. Lett. 2011, 32, 1035–1037.

    Article  Google Scholar 

  4. Yan, L.; Punckt, C.; Aksay, I. A.; Mertin, W.; Bacher, G. Local voltage drop in a single functionalized graphene sheet characterized by Kelvin probe force microscopy. Nano Lett. 2011, 11, 3543–3549.

    Article  Google Scholar 

  5. Zhu, W.; Low, T.; Perebeinos, V.; Bol, A. A.; Zhu, Y.; Yan, H.; Tersoff, J.; Avouris, P. Structure and electronic transport in graphene wrinkles. Nano Lett. 2012, 12, 3431–3436.

    Article  Google Scholar 

  6. Guo, Y.; Guo, W. Electronic and field emission properties of wrinkled graphene. J. Phys. Chem. C 2012, 117, 692–696.

    Article  Google Scholar 

  7. Lee, J.-K.; Yamazaki, S.; Yun, H.; Park, J.; Kennedy, G. P.; Kim, G.-T.; Pietzsch, O.; Wiesendanger, R.; Lee, S.; Hong, S.; et al. Modification of electrical properties of graphene by substrate-induced nanomodulation. Nano Lett. 2013, 13, 3494–3500.

    Article  Google Scholar 

  8. Wang, C.; Lan L.; Tan, H. The physics of wrinkling in graphene membranes under local tension. Phys. Chem. Chem. Phys. 2013, 15, 2764–2773.

    Article  Google Scholar 

  9. Clark, K. W.; Zhang, X.-G.; Vlassiouk, I. V.; He, G.; Feenstra, R. M.; Li, A.-P. Spatially resolved mapping of electrical conductivity across individual domain (grain) boundaries in graphene. ACS Nano 2013, 7, 7956–7966.

    Article  Google Scholar 

  10. Lanza, M.; Wang, Y.; Bayerl, A.; Gao, T.; Porti, M.; Nafria, M.; Liang, H.; Jing, G.; Liu, Z.; Zhang, Y.; et al. Tuning graphene morphology by substrate towards wrinkle-free devices: Experiment and simulation. J. Appl. Phys. 2013, 113, 104301.

    Article  Google Scholar 

  11. Mun, J. H.; Cho, B. J. Synthesis of monolayer graphene having a negligible amount of wrinkles by stress relaxation. Nano Lett. 2013, 13, 2496–2499.

    Article  Google Scholar 

  12. Yan, H.; Chu, Z.-D.; Yan, W.; Liu, M.; Meng, L.; Yang, M.; Fan, Y.; Wang, J.; Dou, R.-F.; Zhang, Y.; et al. Superlattice Dirac points and space-dependent Fermi velocity in a corrugated graphene monolayer. Phys. Rev. B 2013, 87, 075405.

    Article  Google Scholar 

  13. Chae, S. J.; Güneş, F.; Kim, K. K.; Kim, E. S.; Han, G. H.; Kim, S. M.; Shin, H. J.; Yoon, S. M.; Choi, J. Y.; Park, M. H.; et al. Synthesis of large-area graphene layers on Poly-nickel substrate by chemical vapor deposition: Wrinkle formation. Adv. Mater. 2009, 21, 2328–2333.

    Article  Google Scholar 

  14. Liu, N.; Pan, Z.; Fu, L.; Zhnag, C.; Dai, B.; Liu, Z. The origin of wrinkles on transferred graphene. Nano Res. 2011, 4, 996–1004.

    Article  Google Scholar 

  15. Luo, Z.; Lu, Y.; Singer, D. W.; Berck, M. E.; Somers, L. A.; Goldsmith, B. R.; Johnson, A. C. Effect of substrate roughness and feedstock concentration on growth of wafer-scale graphene at atmospheric pressure. Chem. Mater. 2011, 23, 1441–1447.

    Article  Google Scholar 

  16. Chen, Z.; Ren, W.; Gao, L.; Liu, B.; Pei, S.; Cheng, H.-M. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 2011, 10, 424–428.

    Article  Google Scholar 

  17. Zhang, Y.; Gao, T.; Xie, S.; Dai, B.; Fu, L.; Gao, Y.; Chen, Y.; Liu, M.; Liu, Z. Different growth behaviors of ambient pressure chemical vapor deposition graphene on Ni (111) and Ni films: A scanning tunneling microscopy study. Nano Res. 2012, 5, 402–411.

    Article  Google Scholar 

  18. Surwade, S. P.; Li, Z.; Liu, H. Thermal oxidation and unwrinkling of chemical vapor deposition-grown graphene. J. Phys. Chem. C 2012, 116, 20600–20606.

    Article  Google Scholar 

  19. Krell, A. Improved hardness and hierarchic influences on wear in submicron sintered alumina. Mat. Sci. Eng. A 1996, 209, 156–163.

    Article  Google Scholar 

  20. Onishi, T.; Yoshikawa, T. Application of high-pressure annealing process to dual damascene copper interconnections. Mater. Trans. 2002, 43, 1605–1614.

    Article  Google Scholar 

  21. Shin, D. H.; Park, J.-J.; Kim, Y.-S.; Park, K.-T. Constrained groove pressing and its application to grain refinement of aluminum. Mat. Sci. Eng. A 2002, 328, 98–103.

    Article  Google Scholar 

  22. Genin, F.; Mullins, W.; Wynblatt, P. The effect of stress on grain boundary grooving. Acta Metall. Mater. 1993, 41, 3541–3547.

    Article  Google Scholar 

  23. Volkert, C.; Lingk, C. Effect of compression on grain growth in Al films. Appl. Phys. Lett. 1998, 73, 3677–3679.

    Article  Google Scholar 

  24. Ferrari, A.; Meyer, J.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.; Roth, S.; et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

    Article  Google Scholar 

  25. Graf, D.; Molitor, F.; Ensslin, K.; Stampfer, C.; Jungen, A.; Hierold, C.; Wirtz, L. Spatially resolved Raman spectroscopy of single-and few-layer graphene. Nano Lett. 2007, 7, 238–242.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung Jin Cho.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mun, J.H., Oh, J.G., Bong, J.H. et al. Wrinkle-free graphene with spatially uniform electrical properties grown on hot-pressed copper. Nano Res. 8, 1075–1080 (2015). https://doi.org/10.1007/s12274-014-0585-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0585-x

Keywords

Navigation