Skip to main content
Log in

Evolution of the Raman spectrum of graphene grown on copper upon oxidation of the substrate

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Significant changes in the Raman spectrum of single-layer graphene grown on a copper film were observed after the spontaneous oxidation of the underlying substrate that occurred under ambient conditions. The frequencies of the graphene G and 2D Raman modes were found to undergo red shifts, while the intensities of the two bands change by more than an order of magnitude. To understand the origin of these effects, we further characterized the samples by scanning tunneling microscopy (STM), scanning tunneling spectroscopy (STS), and atomic force microscopy (AFM). The oxidation of the substrate produced an appreciable corrugation in the substrate without disrupting the crystalline order of the graphene overlayer and/or changing the carrier doping level. We explain the red shifts of the Raman frequencies in terms of tensile strain induced by corrugation of the graphene layer. The changes in Raman intensity with oxidation arise from the influence of the thin cuprous oxide film on the efficiency of light coupling with the graphene layer in the Raman scattering process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novoselov, K. S.; Geim, A. K.; Morosov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, I. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200.

    Article  Google Scholar 

  2. Zhang, Y.; Tan, Y. W.; Stormer, H. L.; Kim, P. Experimental observation of quantum hall effect and Berry’s phase in graphene. Nature 2005, 438, 201–204.

    Article  Google Scholar 

  3. Zabel, J.; Nair, R. R.; Ott, A.; Georgiou, T.; Geim, A. K.; Novoselov, K. S.; Casiraghi, C. Raman Spectroscopy of Graphene and Bilayer under biaxial strain: Bubbles and balloons. Nano Lett. 2012, 12, 617–621.

    Article  Google Scholar 

  4. He, R.; Zhao, L.; Petrone, N.; Kim, K. S.; Roth, M.; Hone, J.; Kim, P.; Pasupathy, A.; Pinczuk, A. Large Physisorption Strain in Chemical vapor deposition of graphene on copper substrates. Nano Lett. 2012, 12, 2408–2413.

    Article  Google Scholar 

  5. Pisana, S.; Lazzeri, M.; Casiraghi, C.; Novoselov, K. S.; Geim, A. K.; Ferrari, A. C.; Mauri, F. Breakdown of the adiabatic Born-Oppenheimer approximation in graphene. Nat. Mater. 2007, 6, 198–201.

    Article  Google Scholar 

  6. Xue, J.; Sanchez-Yamagishi, J.; Bulmash, D.; Jacquod, P.; Deshpande, A.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P.; LeRoy, B. J. Scanning tunneling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nat. Mater. 2011, 10, 282–285.

    Article  Google Scholar 

  7. Huang, E. H.; Adam, S.; Das Sarma, S. Carrier transport in two-dimensional graphene layers. Phys. Rev. Lett. 2007, 98, 186806.

    Article  Google Scholar 

  8. Chen, J. H.; Jang, C.; Adam, S.; Fuhrer, M. S.; Williams, E. D.; Ishigami, M. Charged impurity scattering in graphene. Nat. Phys. 2008, 4, 377–381.

    Article  Google Scholar 

  9. Lin, C.; Huang, X.; Ke, F.; Jin, C.; Tong, N.; Yin, X.; Gan, L.; Guo, X.; Zhao, R.; Yang, W. et al. Quasi-one-dimensional graphene superlattices formed on high-index surfaces. Phys. Rev. B 2014, 89, 085416.

    Article  Google Scholar 

  10. Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722–726.

    Article  Google Scholar 

  11. Huang, X.; Lin, C.; Yin, X.; Zhao, R.; Wang, E.; Hu, Z. Hydrogen adsorption on one-dimensional graphene superlattices. Acta Phys. Sin. 2014, 63, 197301.

    Google Scholar 

  12. Shih, C. J.; Strano, M. S.; Blankschtein, D. Wetting translucency of graphene. Nat. Mater. 2013, 12, 866–869.

    Article  Google Scholar 

  13. Hirsch, A.; Englert, J. M.; Hauke, F. Wet chemical functionalization of graphene. Acc. Chem. Res. 2013, 46, 87–96.

    Article  Google Scholar 

  14. Zhou, H.; Yu, W. J.; Liu, L.; Cheng, R.; Chen, Y.; Huang, X.; Liu, Y.; Wang, Y.; Huang, Y.; Duan, X. Chemical vapor deposition growth of large single crystals of monolayer and bilayer graphene. Nat. Commun. 2013, 4, 2096.

    Google Scholar 

  15. Gan, L.; Luo, Z. Turning off hydrogen to realize seeded growth of subcentimeter single-crystal graphene grains on copper. ACS Nano 2013, 7, 9480–9488.

    Article  Google Scholar 

  16. Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30–35.

    Article  Google Scholar 

  17. Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.

    Article  Google Scholar 

  18. Borca, B.; Barja, S.; Garnica, M.; Sanchez-Portal, D.; Silkin, V. M.; Chulkov, E.V.; Hermanns, C. F.; Hinarejos, J. J.; Vazquez de Parga, A. L.; Arnau, A. et al. Potential energy landscape for hot electrons in periodically nanostructured graphene. Phys. Rev. Lett. 2010, 105, 036804.

    Article  Google Scholar 

  19. Rasool, H. I.; Song, E. B.; Allen, M. J.; Wassei, J. K.; Kaner, R. B.; Wang, K. L.; Weiller, B. H.; Gimzewski, J. K. Continuity of graphene on polycrystalline copper. Nano Lett. 2011, 11, 251–256.

    Article  Google Scholar 

  20. Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

    Article  Google Scholar 

  21. Arco, L. G. D.; Zhang, Y.; Schlenker, C. W.; Ryu, K.; Thompson, M. E.; Zhou, C. Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano 2010, 4, 2865–2873.

    Article  Google Scholar 

  22. Luo, Z.; Kim, S.; Kawamoto, N.; Rappe, A. M.; Johnson, A. T. C. Growth mechanism of hexagonal-shape graphene flakes with zigzag edges. ACS Nano 2011, 5, 9154–9160.

    Article  Google Scholar 

  23. Cao, P.; Varghese, J. O.; Xu, K.; Heath, J. R. Visualizing local doping effects of individual water Clusters on gold(111)-supported graphene. Nano Lett. 2012, 12, 1459–1463.

    Article  Google Scholar 

  24. Sutter, P.; Sadowski, J. T.; Sutter, E. A. Chemistry under cover: Tuning metal-graphene interaction by reactive intercalation. J. Am. Chem. Soc. 2010, 132, 8175–8179.

    Article  Google Scholar 

  25. Varykhalov, A.; Sanchez-Barriga, J.; Shikin, A. M.; Biswas, C.; Vescovo, E.; Rybkin, A.; Marchenko, D.; Rader, O. Electronic and magnetic properties of quasifreestanding graphene on Ni. Phys. Rev. Lett. 2008, 101, 157601.

    Article  Google Scholar 

  26. Granas, E.; Knudsen, J.; Schroder, U. A.; Gerber, T.; Busse, C.; Arman, M. A.; Schulte, K.; Andersen, J. N.; Michely, T. Oxygen intercalation under graphene on Ir(111): Energetics, kinetics and the role of graphene edges. ACS Nano 2012, 6, 9951–9963.

    Article  Google Scholar 

  27. Chen, S.; Brown, L.; Levendorf, M.; Cai, W.; Ju, S.; Edgeworth, J.; Li, X.; Magnuson, C. W.; Velamakanni, A.; Piner, R. D. et al. Oxidation resistance of graphene-coated Cu and Cu/Ni Alloy. ACS Nano 2011, 5, 1321–1327.

    Article  Google Scholar 

  28. Duong, D. L.; Han, G. H.; Lee, S. M.; Gunes, F.; Kim, E. S.; Kim, S. T.; Kim, H.; Ta, Q. H.; So, K. P.; Yoon, S. J. et al. Probing graphene grain boundaries with optical microscopy. Nature 2012, 490, 235–239.

    Article  Google Scholar 

  29. Lu, A. Y.; Wei, S. Y.; Wu, C. Y.; Hernandez, Y.; Chen, T. Y.; Liu, T. H.; Pao, C. W.; Chen, F. R.; Li, L. J.; Juang, Z. Y. Decoupling of CVD graphene by controlled oxidation of recrystallized Cu. RSC Adv. 2012, 2, 3008–3013.

    Article  Google Scholar 

  30. Zhou, F.; Li, Z.; Shenoy, G. J.; Li, L; Liu, H. Enhanced room-temperature corrosion of copper in the presence of graphene. ACS Nano 2013, 7, 6939–6947.

    Article  Google Scholar 

  31. Schriver, M.; Regan, W.; Gannett, W. J.; Zaniewski, A. M.; Crommie, M. F.; Zettl, A. Graphene as a long-term metal oxidation barrier: Worse than nothing. ACS Nano 2013, 7, 5763–5768.

    Article  Google Scholar 

  32. Balkanski, M.; Nusimovici, M. A.; Reydellet, J. First order Raman spectrum of Cu2O. Solid State Commun. 1969, 7, 815–818.

    Article  Google Scholar 

  33. Zhao, L.; He, R.; Rim, K. T.; Schiros, T.; Kim, K. S.; Zhou, H.; Gutierrez, C.; Chockalingam, S. P.; Arguello, C. J.; Pavlova, L. et al. Visualizing individual nitrogen dopants in monolayer graphene. Science 2011, 333, 999–1003.

    Article  Google Scholar 

  34. Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Ferrari, A. C. et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 2008, 3, 210–215.

    Article  Google Scholar 

  35. Yan, J.; Zhang, Y.; Kim, P.; Pinczuk, A. Electric field effect tuning of electron-phonon coupling in graphene. Phys. Rev. Lett. 2007, 98, 166802.

    Article  Google Scholar 

  36. Ferralis, N.; Maboudian, R.; Carraro, C. Evidence of structural strain in epitaxial graphene layers on 6H-SiC(0001). Phys. Rev. Lett. 2008, 101, 156801.

    Article  Google Scholar 

  37. Ni, Z. H.; Yu, T.; Lu, Y. H.; Wang, Y. Y.; Feng, Y. P.; Shen, Z. X. Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano 2008, 2, 2301–2305.

    Article  Google Scholar 

  38. Metzger, C.; Remi, S.; Liu, M.; Kusminskiy, S. V.; Neto, A. H. C.; Swan, A. K.; Goldberg, B. B. Biaxial strain in graphene adhered to shallow depressions. Nano Lett. 2010, 10, 6–10.

    Article  Google Scholar 

  39. Huang, M.; Yan, H.; Heinz, T. F.; Hone, J. Probing strain-induced electronic structure change in graphene by Raman spectroscopy. Nano Lett. 2010, 10, 4074–4079.

    Article  Google Scholar 

  40. Huang, M.; Yan, H.; Chen, C.; Song, D.; Heinz, T. F.; Hone, J. Phonon softening and crystallographic orientation of strained graphene studied by Raman spectroscopy. Proc. Natl. Acad. Sci. 2009, 106, 7304–7308.

    Article  Google Scholar 

  41. Guinea, F., Katsnelson, M. I., Geim, A. K. Energy gaps and a zero-field quantum hall effect in graphene by strain engineering. Nat. Phys. 2010, 6, 30–33.

    Article  Google Scholar 

  42. Ru, E. C. L.; Etchegoin, P. G. Principles of Surface-Enhanced Raman Spectroscopy; Elsevier Science, 2008.

    Google Scholar 

  43. Palik, E. D. Handbook of Optical Constants of Solids; Academic Press, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tony F. Heinz or Zonghai Hu.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, X., Li, Y., Ke, F. et al. Evolution of the Raman spectrum of graphene grown on copper upon oxidation of the substrate. Nano Res. 7, 1613–1622 (2014). https://doi.org/10.1007/s12274-014-0521-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0521-0

Keywords

Navigation