Skip to main content
Log in

SiC nanowires with thickness-controlled SiO2 shells: Fabrication, mechanism, reaction kinetics and photoluminescence properties

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

SiC nanowires with thickness-controlled SiO2 shells have been obtained by a simple and efficient method, namely treatment of SiC/SiO2 core-shell nanowires in NaOH solution. The products were characterized by transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Raman spectroscopy, infrared (IR) spectroscopy, and photoluminescence spectroscopy. The thickness of the SiO2 shell can be effectively controlled by selecting the appropriate processing time, and pure SiC nanowires were also obtained by alkaline cleaning in 1 mol·L−1 NaOH solution for 40 min at 70 °C. A mechanism for the removal of the SiO2 shells has been proposed, and a two-phase reaction kinetic equation was derived to explain the rate of the removal of the SiO2 shells. The validity of this equation was verified by experiment. This work not only describes an effective experimental method for achieving SiC nanowires with thickness-controlled SiO2 coatings but also provides a fundamental theoretical equation with a certain level of generality. In addition, photoluminescence (PL) measurement results showed that the SiC nanowires sheathed with an optimum SiO2 thickness (3.03 nm) have better photoluminescence properties than either the bare SiC nanowires or SiC nanowires with thicker coatings of SiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hu, B.; Wang, K.; Wu, L. H.; Yu, S. H.; Antonietti, M.; Titirici, M. M. Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv. Mater. 2010, 22, 813–828.

    Article  Google Scholar 

  2. Xu, W. H.; Zhang, Y. X.; Guo, Z.; Chen, X.; Liu, J. H.; Huang, X. J.; Yu, S. H. Conduction performance of individual Cu@C coaxial nanocable connectors. Small 2012, 8, 53–58.

    Article  Google Scholar 

  3. Chen, X.; Liu, Z. G.; Zhao, Z. Q.; Liu, J. H.; Huang, X. J. SnO2 tube-in-tube nanostructures: Cu@C nanocable templated synthesis and their mutual interferences between heavy metal ions revealed by stripping voltammetry. Small 2013, 9, 2233–2239.

    Article  Google Scholar 

  4. Bao, L. H.; Zhang, J. F.; Li, X. D. Flexible Zn2SnO4/MnO2 core/shell nanocable-carbon microfiber hybrid composites for high-performance supercapacitor electrodes. Nano Lett. 2011, 11, 1215–1220.

    Article  Google Scholar 

  5. Qian, F.; Brewster, M.; Lim, S. K.; Ling, Y. C.; Greene, C.; Laboutin, O.; Johnson, J. W.; Gradečak, S.; Cao, Y.; Li, Y. Controlled synthesis of AlN/GaN multiple quantum well nanowire structures and their optical properties. Nano Lett. 2012, 12, 3344–3350.

    Article  Google Scholar 

  6. Gao, M. R.; Xu, W. H.; Luo, L. B.; Zhan, Y. J.; Yu, S. H. Coaxial metal nano-/microcables with isolating sheath: Synthetic methodology and their application as interconnects. Adv. Mater. 2010, 22, 1977–1981.

    Article  Google Scholar 

  7. Zhong, B.; Song, L.; Huang, X. X.; Zhang, X. D.; Wen, G. W.; Zhou, Y. Novel coaxial SiC-SiO2-BN nanocable: Large-scale synthesis, formation mechanism and photoluminescence property. J. Mater. Chem. 2011, 21, 14432–14440.

    Article  Google Scholar 

  8. Cui, H.; Gong, L.; Sun, Y.; Yang, G. Z.; Liang, C. L.; Chen J.; Wang, C. X. Direct synthesis of novel SiC@Al2O3 core-shell epitaxial nanowires and field emission characteristics. CrystEngComm. 2011, 13, 1416–1421.

    Article  Google Scholar 

  9. Li, Y.; Dorozhkin, P. S.; Bando, Y.; Golberg, D. Controllable modification of SiC nanowires encapsulated in BN nanotubes. Adv. Mater. 2005, 17, 545–549.

    Article  Google Scholar 

  10. Wang, X. Y.; Zhai, H. Z.; Cao, C. B.; Cai, H. N.; Wang, Y.; Chan, H. L. W. One-step synthesis of orientation accumulation SiC-C coaxial nanocables at low temperature. J. Mater. Chem. 2009, 19, 2958–2962.

    Article  Google Scholar 

  11. Kim, H. Y.; Bae, S. Y.; Kim, N. S.; Park, J. Fabrication of SiC-C coaxial nanocables: Thickness control of C outer layers. Chem. Comm. 2003, 2634–2635.

    Google Scholar 

  12. Wang, Z. L.; Dai, Z. R.; Gao, R. P.; Bai, Z. G.; Gole, J. L. Side-by-side silicon carbide-silica biaxial nanowires: Synthesis, structure, and mechanical property. Appl. Phys. Lett. 2000, 77, 3349–3351.

    Article  Google Scholar 

  13. Kwak, G.; Lee, M.; Senthil, K.; Yong, K. Wettability control and water droplet dynamics on SiC-SiO2 core-shell nanowires. Langmuir 2010, 26, 12273–12277.

    Article  Google Scholar 

  14. Ryu, Y.; Tak, Y.; Yong, K. Direct growth of core-shell SiC-SiO2 nanowires and field emission characteristics. Nanotechnology 2005, 16, S370–S374.

    Article  Google Scholar 

  15. Zhang, H. F.; Wang, C. M.; Wang, L. S. Helical crystalline SiC/SiO2 core-shell nanowires. Nano Lett. 2002, 2, 941–944.

    Article  Google Scholar 

  16. Ye, H.; Titchenal, N.; Gogotsi, Y.; Ko, F. SiC nanowires synthesized from electrospun nanofiber templates. Adv. Mater. 2005, 17, 1531–1535.

    Article  Google Scholar 

  17. Wei, G. D.; Qin, W. P.; Zheng, K. Z.; Zhang, D. S.; Sun, J. B.; Lin, J. J.; Kim, R.; Wang, G. F.; Zhu, P. F.; Wang, L. L. Synthesis and properties of SiC/SiO2 nanochain heterojunctions by microwave method. Cryst. Growth Des. 2009, 9, 1431–1435.

    Article  Google Scholar 

  18. Bechelany, M.; Brioude, A.; Stadelmann, P.; Ferro, G.; Cornu, D.; Miele, P. Very long SiC-based coaxial nanocables with tunable chemical composition. Adv. Funct. Mater. 2007, 17, 3251–3257.

    Article  Google Scholar 

  19. Li, Z. J.; Gao, W. D.; Meng, A. L.; Geng, Z. D.; Gao, L. Large-scale synthesis and Raman and photoluminescence properties of single crystalline β-SiC nanowires periodically wrapped by amorphous SiO2 nanospheres. J. Phys. Chem. C 2009, 113, 91–96.

    Article  Google Scholar 

  20. Liu, L. J.; Yiu, Y. M.; Sham, T. K. Electronic structures and optical properties of 6H- and 3C-SiC microstructures and nanostructures from X-ray absorption fine structures, X-ray excited optical luminescence, and theoretical studies. J. Phys. Chem. C 2010, 114, 6966–6975.

    Article  Google Scholar 

  21. Tateyama, H.; Noma, H.; Adachi, Y.; Komatsu, M. Prediction of stacking faults in β-silicon carbide X-ray and NMR studies. Chem. Mater. 1997, 9, 766–772.

    Article  Google Scholar 

  22. Meng, A. L.; Li, Z. J.; Zhang, J. L.; Gao, L.; Li, H. J. Synthesis and Raman scattering of β-SiC/SiO2 core-shell nanowires. J. Cryst. Growth 2007, 308, 263–268.

    Article  Google Scholar 

  23. Rohmfeld, S.; Hundhausen, M.; Ley, L. Raman scattering in polycrystalline 3C-SiC: Influence of stacking faults. Phys. Rev. B 1998, 58, 9858–9862.

    Article  Google Scholar 

  24. Olego, D.; Cardona, M. Temperature dependence of the optical phonons and transverse effective charge in 3C-SiC. Phys. Rev. B 1982, 25, 3889–3896.

    Article  Google Scholar 

  25. Shi, W. S.; Zheng, Y. F.; Peng, H. Y.; Wang, N.; Lee, C. S.; Lee, S. T. Laser ablation synthesis and optical characterization of silicon carbide nanowires. J. Am. Ceram. Soc. 2000, 83, 3228–3230.

    Article  Google Scholar 

  26. Luo, X. G.; Ma, W. H.; Zhou, Y.; Liu, D. C.; Yang, B.; Dai, Y. N. Synthesis and photoluminescence property of silicon carbide nanowires via carbothermic reduction of silica. Nanoscale Res. Lett. 2010, 5, 252–256.

    Article  Google Scholar 

  27. Amy, S. R.; Michalak, D. J.; Chabal, Y. J. Investigation of the reactions during alkylation of chlorine-terminated silicon (111) surfaces. J. Phys. Chem. C 2007, 111, 13053–3061.

    Google Scholar 

  28. Wang, D. S.; Xie, T.; Li, Y. D. Nanocrystals: Solution-based synthesis and applications as nanocatalysts. Nano Res. 2009, 2, 36–40.

    Google Scholar 

  29. Xie, T.; Gong, M.; Niu, Z. Q.; Li, S.; Yan, X. Y.; Li, Y. D. Shape-controlled CuCl crystallite catalysts for aniline coupling. Nano Res. 2010, 3, 174–179.

    Article  Google Scholar 

  30. Li, S.; Xie, T.; Peng, Q.; Li, Y. D. Nucleation and growth of CeF3 and NaCeF4 nanocrystals. Chem. Eur. J. 2009, 15, 2512–2517.

    Article  Google Scholar 

  31. Xie, T.; Li, S.; Peng, Q.; Li, Y. D. Monodisperse BaF2 nanocrystals: Phases, size transitions, and self-assembly. Angew. Chem. Int. Ed. 2009, 121, 202–206.

    Article  Google Scholar 

  32. Xie, T.; Li, S.; Wang, W. B.; Peng, Q.; Li, Y. D. Nucleation and growth of BaFxCl2−x nanorods. Chem. Eur. J. 2008, 14, 9730–9735.

    Article  Google Scholar 

  33. Feng, D. H.; Jia, T. Q.; Li, X. X.; Xu, Z. Z.; Chen, J.; Deng, S. Z.; Wu, Z. S.; Xu, N. S. Catalytic synthesis and photoluminescence of needle-shaped 3C-SiC nanowires. Solid State Commun. 2003, 128, 295–297.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Meng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Zhao, J., Zhang, M. et al. SiC nanowires with thickness-controlled SiO2 shells: Fabrication, mechanism, reaction kinetics and photoluminescence properties. Nano Res. 7, 462–472 (2014). https://doi.org/10.1007/s12274-014-0413-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0413-3

Keywords

Navigation