Skip to main content
Log in

M13 bacteriophage-polymer nanoassemblies as drug delivery vehicles

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Poly(caprolactone-b-2-vinylpyridine) (PCL-P2VP) coated with folate-conjugated M13 (FA-M13) provides a nanosized delivery system which is capable of encapsulating hydrophobic antitumor drugs such as doxorubicin (DOX). The DOX-loaded FA-M13-PCL-P2VP assemblies had an average diameter of approximately 200 nm and their structure was characterized using transmission electron microscopy, scanning electron microscopy, and dynamic light scattering. The particles were stable at physiological pH but could be degraded at a lower pH. The release of DOX from the nanoassemblies under acidic conditions was shown to be significantly faster than that observed at physiological pH. In addition, the DOX-loaded FA-M13-PCL-P2VP particles showed a distinctly greater cellular uptake and cytotoxicity against folate-receptor-positive cancer cells than folate-receptor-negative cells, indicating that the receptor facilitates folate uptake via receptor-mediated endocytosis. Furthermore, the DOX-loaded particles also had a significantly higher tumor uptake and selectivity compared to free DOX. This study therefore offers a new way to fabricate nanosized drug delivery vehicles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Farokhzad, O. C.; Langer, R. Nanomedicine: Developing smarter therapeutic and diagnostic modalities. Adv. Drug Deliver. Rev. 2006, 58, 1456–1459.

    Article  CAS  Google Scholar 

  2. Farokhzad, O. C.; Langer, R. Impact of nanotechnology on drug delivery. ACS Nano 2009, 3, 16–20.

    Article  CAS  Google Scholar 

  3. Ferrari, M. Cancer nanotechnology: Opportunities and challenges. Nat. Rev. Cancer 2005, 5, 161–171.

    Article  CAS  Google Scholar 

  4. Kim, D. K.; Dobson, J. Nanomedicine for targeted drug delivery. J. Mater. Chem. 2009, 19, 6294–6307.

    Article  CAS  Google Scholar 

  5. Sinha, R.; Kim, G. J.; Nie, S. M.; Shin, D. M. Nanotechnology in cancer therapeutics: Bioconjugated nanoparticles for drug delivery. Mol. Cancer Ther. 2006, 5, 1909–1917.

    Article  CAS  Google Scholar 

  6. Zhang, L.; Gu, F. X.; Chan, J. M.; Wang, A. Z.; Langer, R.; Farokhzad, O. C. Nanoparticles in medicine: Therapeutic applications and developments. Clin. Pharmacol. Ther. 2008, 83, 761–769.

    Article  CAS  Google Scholar 

  7. Royston, E.; Ghosh, A.; Kofinas, P.; Harris, M. T.; Culver, J. N. Self-assembly of virus-structured high surface area nanomaterials and their application as battery electrodes. Langmuir 2007, 24, 906–912.

    Article  Google Scholar 

  8. Klem, M. T.; Young, M.; Douglas, T. Biomimetic synthesis of β-TiO2 inside a viral capsid. J. Mater. Chem. 2008, 18, 3821–3823.

    Article  CAS  Google Scholar 

  9. Yi, H.; Rubloff, G. W.; Culver, J. N. TMV microarrays: Hybridization-based assembly of DNA-programmed viral nanotemplates. Langmuir 2007, 23, 2663–2667.

    Article  CAS  Google Scholar 

  10. Mao, C.; Aihua, L.; Binrui, C. Virus-based chemical and biological sensing. Angew. Chem. Int. Ed. 2009, 48, 6790–6810.

    Article  CAS  Google Scholar 

  11. Liu, A.; Abbineni, G.; Mao, C. Nanocomposite films assembled from genetically engineered filamentous viruses and gold nanoparticles: Nanoarchitecture- and humidity-tunable surface plasmon resonance spectra. Adv. Mater. 2009, 21, 1001–1005.

    Article  CAS  Google Scholar 

  12. Mao, C. B.; Flynn, C. E.; Hayhurst, A.; Sweeney, R.; Qi, J. F.; Georgiou, G.; Iverson, B.; Belcher, A. M. Viral assembly of oriented quantum dot nanowires. Proc. Nat. Acad. Sci. U. S. A. 2003, 100, 6946–6951.

    Article  CAS  Google Scholar 

  13. Mao, C. B.; Solis, D. J.; Reiss, B. D.; Kottmann, S. T.; Sweeney, R. Y.; Hayhurst, A.; Georgiou, G.; Iverson, B.; Belcher, A. M. Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires. Science 2004, 303, 213–217.

    Article  CAS  Google Scholar 

  14. Destito, G.; Yeh, R.; Rae, C. S.; Finn, M. G.; Manchester, M. Folic acid-mediated targeting of cowpea mosaic virus particles to tumor cells. Chem. Biol. 2007, 14, 1152–1162.

    Article  CAS  Google Scholar 

  15. Young, M.; Willits, D.; Uchida, M.; Douglas, T. Plant viruses as biotemplates for materials and their use in nanotechnology. Ann. Rev. Phyt. 2008, 46, 361–384.

    Article  CAS  Google Scholar 

  16. Kaur, G.; Valarmathi, M. T.; Potts, J. D.; Wang, Q. Plant virus as polyvalent substrate to promote the osteoblastic differentiation of rat bone marrow stromal cells. Biomaterials, 2008, 29, 4074–4081.

    Article  CAS  Google Scholar 

  17. Kaur, G.; Valarmathi, M. T.; Potts, J. D.; Jabbari, E.; Sabo-Attwood, T.; UWang, Q. Regulation of osteogenic differentiation of rat bone marrow stromal cells on 2D nanorod substrates. Biomaterials, 2010, 31, 1732–1741.

    Article  CAS  Google Scholar 

  18. Ngweniform, P.; Abbineni, G.; Cao, B. R.; Mao, C. B. Self-assembly of drug-loaded liposomes on genetically engineered target-recognizing M13 phage: A novel nanocarrier for targeted drug delivery. Small 2009, 5, 1963–1969.

    Article  CAS  Google Scholar 

  19. Lee, L. A.; Niu, Z.; Wang, Q. Viruses and virus-like protein assemblies-Chemically programmable nanoscale building blocks. Nano Res. 2009, 2, 349–364.

    Article  CAS  Google Scholar 

  20. Bruckman, M.; Kaur, G.; Lee, L. A.; Xie, F.; Sepulveda, J.; Breitenkamp, R.; Zhang, X.; Joralemon, M.; Russell, T. P.; Emrick, T.; Wang, Q. Surface modification of tobacco mosaic virus with “click” chemistry. ChemBioChem 2008, 9, 519–523.

    Article  CAS  Google Scholar 

  21. Barnhill, H. N.; Claudel-Gillet, S.; Ziessel, R.; Charbonniére, L. J.; Wang, Q. Prototype protein assembly as scaffold for time-resolved fluoroimmuno assays. J. Am. Chem. Soc. 2007, 129, 7799–7806.

    Article  CAS  Google Scholar 

  22. Wang, Q.; Lin, T.; Tang, L.; Johnson, J. E.; Finn, M. G. Icosahedral virus particles as addressable nanoscale building blocks. Angew. Chem. Int. Ed. 2002, 114, 477–480.

    Google Scholar 

  23. Strable, E.; Finn, M. G. Chemical modification of viruses and virus-like particles. Virus. Nanotechno. 2009, 327, 1–21.

    Article  CAS  Google Scholar 

  24. Wang, Q.; Lin, T. W.; Johnson, J. E.; Finn, M. G. Natural supramolecular building blocks: Cysteine-added mutants of cowpea mosaic virus. Chem. Biol. 2002, 9, 813–819.

    Article  CAS  Google Scholar 

  25. Koudelka, K. J.; Rae, C.; Manchester, M. A plant-virus based nanoscaffold interacts specifically with the mammalian cell surface. Nanomed.: Nanotechnol. Biol. Med. 2007, 3, 349–350.

    Article  Google Scholar 

  26. Manchester, M. Targeted therapy using virus-based nanoparticles (VNPs). Nanomed.: Nanotechnol. Biol. Med. 2006, 2, 294.

    Article  Google Scholar 

  27. Li, T.; Niu, Z.; Emrick, T.; Russell, T. P.; Wang, Q. Core/shell biocomposites from the hierarchical assembly of bionanoparticles and polymer. Small 2008, 4, 1624–1629.

    Article  CAS  Google Scholar 

  28. Li, T.; Wu, L.; Suthiwangcharoen, N.; Bruckman, M. A.; Cash, D.; Hudson, J. S.; Ghoshroy, S.; Wang, Q. Controlled assembly of rodlike viruses with polymers. Chem. Commun. 2009, 2869–2871.

  29. Li, T.; Ye, B.; Niu, Z.; Thompson, P.; Seifert, S.; Lee, B.; Wang, Q. Closed-packed colloidal assemblies from icosahedral plant virus and polymer. Chem. Mater. 2009, 21, 1046–1050.

    Article  CAS  Google Scholar 

  30. Li, T.; Niu, Z.; Suthiwangcharoen, N.; Li, R.; Prevelige, P. E.; Wang, Q. Polymer-virus core-shell structures prepared via co-assembly and template synthesis methods. Sci. China Ser. B 2010, 53, 71–77.

    CAS  Google Scholar 

  31. Flynn, C. E.; Lee, S. W.; Peelle, B. R.; Belcher, A. M. Viruses as vehicles for growth, organization and assembly of materials. Acta Mater. 2003, 51, 5867–5880.

    Article  CAS  Google Scholar 

  32. Simons, G. F. M.; Konings, R. N. H.; Schoemakers, J. G. G. Genes-VI, genes-VII, and genes-IX of phage-M13 code for minor capsid proteins of the virion. Proc. Nat. Acad. Sci. U. S. A. 1981, 78, 4194–4198.

    Article  CAS  Google Scholar 

  33. Chiang, C. Y.; Mello, C. M.; Gu, J. J.; Silva, E.; Van Vliet, K. J.; Belcher, A. M. Weaving genetically engineered functionality into mechanically robust virus fibers. Adv. Mater. 2007, 19, 826–832.

    Article  CAS  Google Scholar 

  34. Nam, K. T.; Kim, D. W.; Yoo, P. J.; Chiang, C. Y.; Meethong, N.; Hammond, P. T.; Chiang, Y. M.; Belcher, A. M. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 2006, 312, 885–888.

    Article  CAS  Google Scholar 

  35. Niu, Z.; Bruckman, M. A.; Harp, B.; Mello, C. M.; Wang, Q. Bacteriophage M13 as a Scaffold for Preparing Conductive Polymeric Composite Fibers. Nano Res. 2008, 1, 235–241.

    Article  CAS  Google Scholar 

  36. Rong, J.; Lee, L. A.; Li, K.; Harp, B.; Mello, C. M.; Niu, Z.; Wang, Q. Oriented cell growth on self-assembled bacteriophage M13 thin films. Chem. Commun. 2008, 5185–5187.

  37. Manchester, M.; Singh, P. Virus-based nanoparticles (VNPs): Platform technologies for diagnostic imaging. Adv. Drug Deliv. Rev. 2006, 58, 1505–1522.

    Article  CAS  Google Scholar 

  38. Yacoby, I.; Bar, H.; Benhar, I. Targeted drug-carrying bacteriophages as antibacterial nanomedicines. Antimicrob. Agents Chemother. 2007, 51, 2156–2163.

    Article  CAS  Google Scholar 

  39. Yacoby, I.; Shamis, M.; Bar, H.; Shabat, D.; Benhar, I. Targeting antibacterial agents by using drug-carrying filamentous bacteriophages. Antimicrob. Agents Chemother. 2006, 50, 2087–2097.

    Article  CAS  Google Scholar 

  40. Bar, H.; Yacoby, I.; Benhar, I. Killing cancer cells by targeted drug-carrying phage nanomedicines. BMC Biotechnol. 2008, 8, 37.

    Article  Google Scholar 

  41. Yacoby, I.; Benhar, I. Targeted filamentous bacteriophages as therapeutic agents. Expert Opin. Drug Deliv. 2008, 5, 321–329.

    Article  CAS  Google Scholar 

  42. Hilderbrand, S. A.; Kelly, K. A.; Weissleder, R.; Tung, C. H. Monofunctional near-infrared fluorochromes for imaging applications. Bioconjugate Chem. 2005, 16, 1275–1281.

    Article  CAS  Google Scholar 

  43. Hilderbrand, S. A.; Kelly, K. A.; Niedre, M.; Weissleder, R. Near infrared fluorescence-based bacteriophage particles for ratiometric pH imaging. Bioconjugate Chem. 2008, 19, 1635–1639.

    Article  CAS  Google Scholar 

  44. Li, K.; Chen, Y.; Li, S.; Nguyen, H. G.; Niu, Z.; You, S.; Mello, C. M.; Lu, X.; Wang, Q. Chemical modification of M13 bacteriophage and its application in cancer cell imaging. Bioconjugate Chem. 2010, 21, 1369–1377.

    Article  CAS  Google Scholar 

  45. Krag, D. N.; Shukla, G. S.; Shen, G. P.; Pero, S.; Ashikaga, T.; Fuller, S.; Weaver, D. L.; Burdette-Radoux, S.; Thomas, C. Selection of tumor-binding ligands in cancer patients with phage display libraries. Cancer Res. 2006, 66, 7724–7733.

    Article  CAS  Google Scholar 

  46. Yoo, H. S.; Park, T. G. Folate-receptor-targeted delivery of doxorubicin nano-aggregates stabilized by doxorubicin-PEG-folate conjugate. J. Control. Release 2004, 100, 247–256.

    Article  CAS  Google Scholar 

  47. Ganta, S.; Devalapally, H.; Shahiwala, A.; Amiji, M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J. Control. Release 2008, 126, 187–204.

    Article  CAS  Google Scholar 

  48. Mammen, M.; Chio, S. K.; Whitesides, G. M. Polyvalent interactions in biological systems: Implications for design and use of multivalent ligands and inhibitors. Angew. Chem. Int. Ed. 1998, 37, 2755–2794.

    Article  CAS  Google Scholar 

  49. Miller, A. C.; Bershteyn, A.; Tan, W.; Hammond, P. T.; Cohen, R. E.; Irvine, D. J. Block copolymer micelles as nanocontainers for controlled release of proteins from biocompatible oil phases. Biomacromolecules 2009, 10, 732–741.

    Article  CAS  Google Scholar 

  50. Van Butsele, K.; Sibret, P.; Fustin, C. A.; Gohy, J. F.; Passirani, C.; Benoit, J. P.; Jérôme, R.; Jérôme, C. Synthesis and pH-dependent micellization of diblock copolymer mixtures. J. Colloid Interf. Sci. 2009, 329, 235–243.

    Article  Google Scholar 

  51. Saul, J. M.; Annapragada, A.; Natarajan, J. V.; Bellamkonda, R. V. Controlled targeting of liposomal doxorubicin via the folate receptor in vitro. J. Control. Release 2003, 92, 49–67.

    Article  CAS  Google Scholar 

  52. Ren, Y.; Wong, S. M.; Lim, L. Y. Folic acid-conjugated protein cages of a plant virus: A novel delivery platform for doxorubicin. Bioconjugate Chem. 2007, 18, 836–843.

    Article  CAS  Google Scholar 

  53. Francis, G. E.; Delgado, C. Drug Targeting: Strategies, Principles, and Applications; Humana Press/Totowa, New Jersey, 2000.

    Google Scholar 

  54. Bala, I.; Bhardwaj, V.; Hariharan, S.; Sitterberg, J.; Bakowsky, U.; Kumar, M. Design of biodegradable nanoparticles: A novel approach to encapsulating poorly soluble phytochemical ellagic acid. Nanotechnology 2005, 16, 2819–2822.

    Article  CAS  Google Scholar 

  55. White, B.; Banerjee, S.; O’Brien, S.; Turro, N. J.; Herman, I. P. Zeta-potential measurements of surfactant-wrapped individual single-walled carbon nanotubes. J. Phys. Chem. C 2007, 111, 13684–13690.

    Article  CAS  Google Scholar 

  56. Lee, H. K.; Lee, H. Y.; Jeon, J. M. Codeposition of micro- and nano-sized SiC particles in the nickel matrix composite coatings obtained by electroplating. Surf. Coat. Tech. 2007, 201, 4711–4717.

    Article  CAS  Google Scholar 

  57. Butsele, K. V.; Fustin, C. A.; Gohy, J. F.; Jérôme, R.; Jérôme, C. Self-assembly and pH-responsiveness of ABC miktoarm star terpolymers. Langmuir 2008, 25, 107–111.

    Article  Google Scholar 

  58. Borchert, U.; Lipprandt, U.; Bilang, M.; Kimpfler, A.; Rank, A.; Peschka-Sass, R.; Schubert, R.; Lindner, P.; Farster, S. pH-induced release from P2VP-PEO block copolymer vesicles. Langmuir 2006, 22, 5843–5847.

    Article  CAS  Google Scholar 

  59. Gao, Y.; Chen, L.; Gu, W.; Xi, Y.; Lin, L.; Li, Y. Targeted nanoassembly loaded with docetaxel improves intracellular drug delivery and efficacy in murine breast cancer model. Mol. Pharmaceut.s 2008, 5, 1044–1054.

    Article  CAS  Google Scholar 

  60. Reddy, J. A.; Clapp, D. W.; Low, P. S. Retargeting of viral vectors to the folate receptor endocytic pathway. J. Control. Release 2001, 74, 77–82.

    Article  CAS  Google Scholar 

  61. Dube, D.; Francis, M.; Leroux, J. C.; Winnik, F. M. Preparation and tumor cell uptake of poly(N-isopropylacrylamide) folate conjugates. Bioconjugate Chem. 2002, 13, 685–692.

    Article  CAS  Google Scholar 

  62. Tian, Z.; Wang, M.; Zhang, A. Y.; Feng, Z. G. Preparation and evaluation of novel amphiphilic glycopeptide block copolymers as carriers for controlled drug release. Polymer 2008, 49, 446–454.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaojin You or Qian Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suthiwangcharoen, N., Li, T., Li, K. et al. M13 bacteriophage-polymer nanoassemblies as drug delivery vehicles. Nano Res. 4, 483–493 (2011). https://doi.org/10.1007/s12274-011-0104-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-011-0104-2

Keywords

Navigation