Skip to main content
Log in

Synergistic effect of atorvastatin and cyanidin-3-glucoside against angiotensin II-mediated vascular smooth muscle cell proliferation and migration through MAPK and PI3K/Akt pathways

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

This study aimed to investigate the mechanism of cyanidin-3-glucoside (C3G) in synergy with atorvastatin, even when it is used in low concentrations. Human aortic smooth muscle cells (HASMCs) were used to verify the synergistic mechanism of atorvastatin and C3G against angiotensin II-induced proliferation and migration. BrdU incorporation assay was used to evaluate cell proliferation. Wound healing and Boyden chamber assays were used to investigate cell migration. The cell cycle was examined using flow cytometry. The results revealed that atorvastatin and C3G exhibit a synergistic effect in ameliorating HASMC proliferation and migration by enhancing cell cycle arrest. In addition, these effects also decreased mitogen-activated protein kinase (MAPK) activity by attenuating the expression of phospho-p38, phospho-extracellular signaling-regulated kinase 1/2, and phospho-c-Jun N-terminal kinase. Furthermore, the combination of atorvastatin and C3G modulated the PI3K/Akt pathway and upregulated p21Cip1, which was associated with decreases in cyclin D1 and phospho-retinoblastoma expressions. The synergistic effect of atorvastatin and C3G induced anti-proliferation and anti-migration through MAPK and PI3K/Akt pathways mediated by AT1R. These results suggest that the synergistic effect of atorvastatin and C3G may be an alternative therapy for atherosclerosis patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Antonopoulos AS, Margaritis M, Lee R, Channon K, Antoniades C (2012) Statins as anti-inflammatory agents in atherogenesis: molecular mechanisms and lessons from the recent clinical trials. Curr Pharm Des 18:1519–1530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Axel DI, Riessen R, Runge H, Viebahn R, Karsch KR (2000) Effects of cerivastatin on human arterial smooth muscle cell proliferation and migration in transfilter cocultures. J Cardiovasc Pharmacol 35:619–629

    Article  CAS  PubMed  Google Scholar 

  • Berridge M (2014) Cell cycle and proliferation. Cell Signal Biol 2014:1–45

    Google Scholar 

  • Brandes R, Beer S, Ha T, Busse R (2003) Withdrawal of cerivastatin induces monocyte chemoattractant protein 1 and tissue factor expression in cultured vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 23:1794–1800

    Article  CAS  PubMed  Google Scholar 

  • Datta SR, Brunet A, Greenberg ME (1999) Cellular survival: a play in three Akts. Genes Dev 13:2905–2927

    Article  CAS  PubMed  Google Scholar 

  • Ding M, Feng R, Wang SY, Bowman L, Lu Y, Qian Y, Castranova V, Jiang B-H, Shi X (2006) Cyanidin-3-glucoside, a natural product derived from blackberry, exhibits chemopreventive and chemotherapeutic activity. J Biol Chem 281:17359–17368

    Article  CAS  PubMed  Google Scholar 

  • Dugourd C, Gervais M, Corvol P, Monnot C (2003) Akt is a major downstream target of PI3-kinase involved in angiotensin II-induced proliferation. Hypertension 41:882–890

    Article  CAS  PubMed  Google Scholar 

  • Entschladen F, Drell Iv TL, Lang K, Masur K, Palm D, Bastian P, Niggemann B, Zaenker KS (2005) Analysis methods of human cell migration. Exp Cell Res 307:418–426

    Article  CAS  PubMed  Google Scholar 

  • Fang J (2014) Bioavailability of anthocyanins. Drug Metab Rev 46:508–520

    Article  CAS  PubMed  Google Scholar 

  • Fukui R, Shibata N, Kohbayashi E, Amakawa M, Furutama D, Hoshiga M, Negoro N, Nakakouji T, Ii M, Ishihara T, Ohsawa N (1997) Inhibition of smooth muscle cell migration by the p21 cyclin-dependent kinase inhibitor (Cip1). Atherosclerosis 132:53–59

    Article  CAS  PubMed  Google Scholar 

  • Gast GC, de Roos NM, Sluijs I, Bots ML, Beulens JW, Geleijnse JM, Witteman JC, Grobbee DE, Peeters PH, van der Schouw YT (2009) A high menaquinone intake reduces the incidence of coronary heart disease. Nutr Metab Cardiovasc Dis 19:504–510

    Article  CAS  PubMed  Google Scholar 

  • Gazzerro P, Proto MC, Gangemi G, Malfitano AM, Ciaglia E, Pisanti S, Santoro A, Laezza C, Bifulco M (2012) Pharmacological actions of statins: a critical appraisal in the management of cancer. Pharmacol Rev 64:102–146

    Article  CAS  PubMed  Google Scholar 

  • Golomb BA, Evans MA (2008) Statin adverse effects: a review of the literature and evidence for a mitochondrial mechanism. Am J Cardiovasc Drugs 8:373–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harbour JW, Dean DC (2000) Rb function in cell-cycle regulation and apoptosis. Nat Cell Biol 2:E65–E67

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann P, Torok M, Zahno A, Waldhauser KM, Brecht K, Krahenbuhl S (2006) Toxicity of statins on rat skeletal muscle mitochondria. Cell Mol Life Sci 63:2415–2425

    Article  CAS  PubMed  Google Scholar 

  • Larsen S, Stride N, Hey-Mogensen M, Hansen CN, Bang LE, Bundgaard H, Nielsen LB, Helge JW, Dela F (2013) Simvastatin effects on skeletal muscle: relation to decreased mitochondrial function and glucose intolerance. J Am Coll Cardiol 61:44–53

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Iwai M, Wu L, Liu HW, Chen R, Jinno T, Suzuki J, Tsuda M, Gao XY, Okumura M (2004) Fluvastatin enhances the inhibitory effects of a selective AT1 receptor blocker, valsartan, on atherosclerosis. Hypertension 44:758–763

    Article  CAS  PubMed  Google Scholar 

  • Liao JK, Laufs U (2005) Pleiotropic effects of statins. Annu Rev Pharmacol Toxicol 45:89–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma MM, Li Y, Liu XY, Zhu WW, Ren X, Kong GQ, Huang X, Wang LP, Luo LQ, Wang XZ (2015) Cyanidin-3-O-glucoside ameliorates lipopolysaccharide-induced injury both in vivo and in vitro suppression of NF-kappaB and MAPK pathways. Inflammation 38:1669–1682

    Article  CAS  PubMed  Google Scholar 

  • Marrero MB, Schieffer B, Li B, Sun J, Harp JB, Ling BN (1997) Role of Janus kinase/signal transducer and activator of transcription and mitogen-activated protein kinase cascades in angiotensin II- and platelet-derived growth factor-induced vascular smooth muscle cell proliferation. J Biol Chem 272:24684–24689

    Article  CAS  PubMed  Google Scholar 

  • Marte BM, Downward J (1997) PKB/Akt: connecting phosphoinositide 3-kinase to cell survival and beyond. Trends Biochem Sci 22:355–358

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki M, Kita T, Mabuchi H, Matsuzawa Y, Nakaya N, Oikawa S, Saito Y, Sasaki J, Shimamoto K, Itakura H (2002) Large scale cohort study of the relationship between serum cholesterol concentration and coronary events with low-dose simvastatin therapy in Japanese patients with hypercholesterolemia. Circ J 66:1087–1095

    Article  CAS  PubMed  Google Scholar 

  • Merx M, Weber C (2009) Benefits of statins beyond lipid lowering. Drug Discov Today Dis Mech 5:e325–e331

    Article  Google Scholar 

  • Middleton EJ, Kandaswami C, Theoharides TC (2000) The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev 52:673–751

    CAS  PubMed  Google Scholar 

  • Muller C, Kiehl MG, van de Loo J, Koch OM (1999) Lovastatin induces p21WAF1/Cip1 in human vascular smooth muscle cells: influence on protein phosphorylation, cell cycle, induction of apoptosis, and growth inhibition. Int J Mol Med 3:63–68

    CAS  PubMed  Google Scholar 

  • Nègre-Aminou P, van Vliet AK, van Erck M, van Thiel GCF, van Leeuwen RE, Cohen LH (1997) Inhibition of proliferation of human smooth muscle cells by various HMG-CoA reductase inhibitors; comparison with other human cell types. Biochim Biophys Acta 1345:259–268

    Article  PubMed  Google Scholar 

  • Nelson CM, Chen CS (2002) Cell-cell signaling by direct contact increases cell proliferation via a PI3K-dependent signal. FEBS Lett 514:238–242

    Article  CAS  PubMed  Google Scholar 

  • Oak MH, Bedoui JE, Madeira SV, Chalupsky K, Schini-Kerth VB (2006) Delphinidin and cyanidin inhibit PDGF(AB)-induced VEGF release in vascular smooth muscle cells by preventing activation of p38 MAPK and JNK. Br J Pharmacol 149:283–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okuyama H, Langsjoen PH, Hamazaki T, Ogushi Y, Hama R, Kobayashi T, Uchino H (2015) Statins stimulate atherosclerosis and heart failure: pharmacological mechanisms. Expert Rev Clin Pharmacol 8:189–199

    Article  CAS  PubMed  Google Scholar 

  • Park JK, Muller DN, Mervaala EM, Dechend R, Fiebeler A, Schmidt F, Bieringer M, Schafer O, Lindschau C, Schneider W, Ganten D, Luft FC, Haller H (2000) Cerivastatin prevents angiotensin II-induced renal injury independent of blood pressure- and cholesterol-lowering effects. Kidney Int 58:1420–1430

    Article  CAS  PubMed  Google Scholar 

  • Rossig L, Jadidi AS, Urbich C, Badorff C, Zeiher AM, Dimmeler S (2001) Akt-dependent phosphorylation of p21(Cip1) regulates PCNA binding and proliferation of endothelial cells. Mol Cell Biol 21:5644–5657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rudijanto A (2007) The role of vascular smooth muscle cells on the pathogenesis of atherosclerosis. Acta Med Indones 39:86–93

    PubMed  Google Scholar 

  • Ruiz-Ortega M, Ruperez M, Esteban V, Egido J (2003) Molecular mechanisms of angiotensin II-induced vascular injury. Curr Hypertens Rep 5:73–79

    Article  PubMed  Google Scholar 

  • Sasaki R, Nishimura N, Hoshino H, Isa Y, Kadowaki M, Ichi T, Tanaka A, Nishiumi S, Fukuda I, Ashida H (2007) Cyanidin 3-glucoside ameliorates hyperglycemia and insulin sensitivity due to downregulation of retinol binding protein 4 expression in diabetic mice. Biochem Pharmacol 74:1619–1627

    Article  CAS  PubMed  Google Scholar 

  • Saward L, Zahradka P (1997) Angiotensin II activates phosphatidylinositol 3-kinase in vascular smooth muscle cells. Circ Res 81:249–257

    Article  CAS  PubMed  Google Scholar 

  • Schmidt-Ott KM, Kagiyama S, Phillips MI (2000) The multiple actions of angiotensin II in atherosclerosis. Regul Pept 93:65–77

    Article  CAS  PubMed  Google Scholar 

  • Song NR, Yang H, Park J, Kwon JY, Kang NJ, Heo YS, Lee KW, Lee HJ (2012) Cyanidin suppresses neoplastic cell transformation by directly targeting phosphatidylinositol 3-kinase. Food Chem 133:658–664

    Article  CAS  Google Scholar 

  • Speciale A, Canali R, Chirafisi J, Saija A, Virgili F, Cimino F (2010) Cyanidin-3-O-glucoside protection against TNF-alpha-induced endothelial dysfunction: involvement of nuclear factor-kappaB signaling. J Agric Food Chem 58:12048–12054

    Article  CAS  PubMed  Google Scholar 

  • Takata R, Fukasawa S, Hara T, Nakajima H, Yamashina A, Yanase N, Mizuguchi J (2004) Cerivastatin-induced apoptosis of human aortic smooth muscle cells through partial inhibition of basal activation of extracellular signal-regulated kinases. Cardiovasc Pathol 13:41–48

    Article  CAS  PubMed  Google Scholar 

  • Touyz RM, Schiffrin EL (2000) Signal transduction mechanisms mediating the physiological and pathophysiological actions of angiotensin II in vascular smooth muscle cells. Pharmacol Rev 52:639–672

    CAS  PubMed  Google Scholar 

  • Tristano AG, Castejon AM, Castro A, Cubeddu LX (2007) Effects of statin treatment and withdrawal on angiotensin II-induced phosphorylation of p38 MAPK and ERK1/2 in cultured vascular smooth muscle cells. Biochem Biophys Res Commun 353:11–17

    Article  CAS  PubMed  Google Scholar 

  • Weinberg RA (1995) The retinoblastoma protein and cell cycle control. Cell 81:323–330

    Article  CAS  PubMed  Google Scholar 

  • Weis M, Heeschen C, Glassford AJ, Cooke JP (2002) Statins have biphasic effects on angiogenesis. Circulation 105:739–745

    Article  CAS  PubMed  Google Scholar 

  • Yan X, Wu L, Li B, Meng X, Dai H, Zheng Y, Fu J (2016) Cyanidin-3-O-glucoside induces apoptosis and inhibits migration of tumor necrosis factor-α-treated rat aortic smooth muscle cells. Cardiovasc Toxicol 16:251–259. doi:10.1007/s12012-015-9333-z

    Article  CAS  PubMed  Google Scholar 

  • Zieske JD, Francesconi CM, Guo X (2004) Cell cycle regulators at the ocular surface. Exp Eye Res 78:447–456

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Council of Thailand and Thailand Research Fund (DBG5980003). RP acknowledges the financial support from the Faculty of Medicine and the Graduate School, Chiang Mai University, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chainarong Tocharus.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pantan, R., Tocharus, J., Phatsara, M. et al. Synergistic effect of atorvastatin and cyanidin-3-glucoside against angiotensin II-mediated vascular smooth muscle cell proliferation and migration through MAPK and PI3K/Akt pathways. Arch. Pharm. Res. (2016). https://doi.org/10.1007/s12272-016-0836-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12272-016-0836-3

Keywords

Navigation