Skip to main content
Log in

Construction and characterization of gelonin and saporin plasmids for toxic gene-based cancer therapy

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Toxic gene therapy (or suicidal gene therapy) is gaining enormous interest, specifically for the treatment of cancer. The success of this therapy lies in several crucial factors, including the potency of gene products to kill the transfected tumor cells and the transfection ability of the transfection vehicles. To address the potency problem, in the present study, we engineered two separate mammalian transfection plasmids (pSAP and pGEL) containing genes encoding ribosome inactivating proteins (RIPs), gelonin and saporin. After the successful preparation and amplification of the plasmids, they were tested on various cancer cell lines (HeLa, U87, 9L, and MDA-MB-435) and a noncancerous cell line (293 HEK) using polyethyleneimine (PEI) as the transfection agent. Transfection studies performed under varying gene concentration, incubation time, and gene-to-PEI ratios revealed that, compared to the treatment of pGFP (GFP expression plasmid)/PEI, both pGEL/PEI and pSAP/PEI complexes could induce significantly augmented cytotoxic effects at only 2 μg/mL gene concentration. Importantly, these cytotoxic effects were observed universally in all tested cancer cell lines. Overall, this study demonstrated the potential of pGEL and pSAP as effective gene candidates for the toxic gene-based cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abi-Habib RJ, Singh R, Liu S, Bugge TH, Leppla SH, Frankel AE (2006) A urokinase-activated recombinant anthrax toxin is selectively cytotoxic to many human tumor cell types. Mol Cancer Ther 5:2556–2562

    Article  CAS  PubMed  Google Scholar 

  • Adams GP, Weiner LM (2005) Monoclonal antibody therapy of cancer. Nat Biotechnol 23:1147–1157

    Article  CAS  PubMed  Google Scholar 

  • Allen TM (2002) Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer 2:750–763

    Article  CAS  PubMed  Google Scholar 

  • Antignani A, Fitzgerald D (2013) Immunotoxins: the role of the toxin. Toxins (Basel) 5:1486–1502

    Article  CAS  Google Scholar 

  • Bagga S, Seth D, Batra JK (2003) The cytotoxic activity of ribosome-inactivating protein saporin-6 is attributed to its rRNA N-glycosidase and internucleosomal DNA fragmentation activities. J Biol Chem 278:4813–4820

    Article  CAS  PubMed  Google Scholar 

  • Baneyx F (1999) Recombinant protein expression in Escherichia coli. Curr Opin Biotechnol 10:411–421

    Article  CAS  PubMed  Google Scholar 

  • Blagosklonny MV (2011) The power of chemotherapeutic engineering: arresting cell cycle and suppressing senescence to protect from mitotic inhibitors. Cell Cycle 10:2295–2298

    Article  CAS  PubMed  Google Scholar 

  • Blakey DC, Skilleter DN, Price RJ, Watson GJ, Hart LI, Newell DR, Thorpe PE (1988) Comparison of the pharmacokinetics and hepatotoxic effects of saporin and ricin A-chain immunotoxins on murine liver parenchymal cells. Cancer Res 48:7072–7078

    CAS  PubMed  Google Scholar 

  • Bozkir A, Saka OM (2004) Chitosan nanoparticles for plasmid DNA delivery: effect of chitosan molecular structure on formulation and release characteristics. Drug Deliv 11:107–112

    Article  CAS  PubMed  Google Scholar 

  • Bremer E, van Dam G, Kroesen BJ, de Leij L, Helfrich W (2006) Targeted induction of apoptosis for cancer therapy: current progress and prospects. Trends Mol Med 12:382–393

    Article  CAS  PubMed  Google Scholar 

  • Byrne JD, Betancourt T, Brannon-Peppas L (2008) Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev 60:1615–1626

    Article  CAS  PubMed  Google Scholar 

  • Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, Gross F, Yvon E, Nusbaum P, Selz F, Hue C, Certain S, Casanova JL, Bousso P, Deist FL, Fischer A (2000) Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288:669–672

    Article  CAS  PubMed  Google Scholar 

  • Chen JS, Liu JC, Shen L, Rau KM, Kuo HP, Li YM, Shi D, Lee YC, Chang KJ, Hung MC (2004) Cancer-specific activation of the survivin promoter and its potential use in gene therapy. Cancer Gene Ther 11:740–747

    Article  CAS  PubMed  Google Scholar 

  • Dai Z, Gjetting T, Mattebjerg MA, Wu C, Andresen TL (2011) Elucidating the interplay between DNA-condensing and free polycations in gene transfection through a mechanistic study of linear and branched PEI. Biomaterials 32:8626–8634

    Article  CAS  PubMed  Google Scholar 

  • Debatin KM (2004) Apoptosis pathways in cancer and cancer therapy. Cancer Immunol Immunother 53:153–159

    Article  PubMed  Google Scholar 

  • Denning C, Pitts JD (1997) Bystander effects of different enzyme-prodrug systems for cancer gene therapy depend on different pathways for intercellular transfer of toxic metabolites, a factor that will govern clinical choice of appropriate regimes. Hum Gene Ther 8:1825–1835

    Article  CAS  PubMed  Google Scholar 

  • Devi GR (2006) siRNA-based approaches in cancer therapy. Cancer Gene Ther 13:819–829

    Article  CAS  PubMed  Google Scholar 

  • Duarte S, Carle G, Faneca H, de Lima MC, Pierrefite-Carle V (2012) Suicide gene therapy in cancer: where do we stand now? Cancer Lett 324:160–170

    Article  CAS  PubMed  Google Scholar 

  • Farnebo M, Bykov VJ, Wiman KG (2010) The p53 tumor suppressor: a master regulator of diverse cellular processes and therapeutic target in cancer. Biochem Biophys Res Commun 396:85–89

    Article  CAS  PubMed  Google Scholar 

  • Ginn SL, Alexander IE, Edelstein ML, Abedi MR, Wixon J (2013) Gene therapy clinical trials worldwide to 2012—an update. J Gene Med 15:65–77

    Article  CAS  PubMed  Google Scholar 

  • Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021

    Article  CAS  PubMed  Google Scholar 

  • Gupta B, Levchenko TS, Torchilin VP (2005) Intracellular delivery of large molecules and small particles by cell-penetrating proteins and peptides. Adv Drug Deliv Rev 57:637–651

    Article  CAS  PubMed  Google Scholar 

  • Kreitman RJ (2000) Immunotoxins. Expert Opin Pharmacother 1:1117–1129

    Article  CAS  PubMed  Google Scholar 

  • Kucerova L, Altanerova V, Matuskova M, Tyciakova S, Altaner C (2007) Adipose tissue-derived human mesenchymal stem cells mediated prodrug cancer gene therapy. Cancer Res 67:6304–6313

    Article  CAS  PubMed  Google Scholar 

  • Lee TY, Park YS, Garcia GA, Sunahara RK, Woods JH, Yang VC (2012) Cell permeable cocaine esterases constructed by chemical conjugation and genetic recombination. Mol Pharm 9:1361–1373

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liang B, He ML, Xiao ZP, Li Y, Chan CY, Kung HF, Shuai XT, Peng Y (2008) Synthesis and characterization of folate-PEG-grafted-hyperbranched-PEI for tumor-targeted gene delivery. Biochem Biophys Res Commun 367:874–880

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Zou WG, Lang MF, Luo J, Sun LY, Wang XN, Qian QJ, Liu XY (2002) Cancer-specific killing by the CD suicide gene using the human telomerase reverse transcriptase promoter. Int J Oncol 21:661–666

    CAS  PubMed  Google Scholar 

  • Lu Y, Low PS (2002) Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv Drug Deliv Rev 54:675–693

    Article  CAS  PubMed  Google Scholar 

  • Malam Y, Loizidou M, Seifalian AM (2009) Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci 30:592–599

    Article  CAS  PubMed  Google Scholar 

  • Niculescu-Duvaz I, Springer CJ (2005) Introduction to the background, principles, and state of the art in suicide gene therapy. Mol Biotechnol 30:71–88

    Article  CAS  PubMed  Google Scholar 

  • Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2:751–760

    Article  CAS  PubMed  Google Scholar 

  • Portsmouth D, Hlavaty J, Renner M (2007) Suicide genes for cancer therapy. Mol Aspects Med 28:4–41

    Article  CAS  PubMed  Google Scholar 

  • Puri M, Kaur I, Perugini MA, Gupta RC (2012) Ribosome-inactivating proteins: current status and biomedical applications. Drug Discov Today 17:774–783

    Article  CAS  PubMed  Google Scholar 

  • Shin MC, Zhang J, Min KA, Lee K, Moon C, Balthasar JP, Yang VC (2014) Combination of antibody targeting and PTD-mediated intracellular toxin delivery for colorectal cancer therapy. J Control Release 194:197–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin MC, Zhao J, Zhang J, Huang Y, He H, Wang M, Min KA, Yang VC (2015) Recombinant TAT-gelonin fusion toxin: synthesis and characterization of heparin/protamine-regulated cell transduction. J Biomed Mater Res A 103:409–419

    Article  PubMed  PubMed Central  Google Scholar 

  • Sievers EL, Senter PD (2013) Antibody-drug conjugates in cancer therapy. Annu Rev Med 64:15–29

    Article  CAS  PubMed  Google Scholar 

  • Stirpe F, Olsnes S, Pihl A (1980) Gelonin, a new inhibitor of protein synthesis, nontoxic to intact cells. Isolation, characterization, and preparation of cytotoxic complexes with concanavalin A. J Biol Chem 255:6947–6953

    CAS  PubMed  Google Scholar 

  • Torchilin VP (2007) Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J 9:E128–E147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urban-Klein B, Werth S, Abuharbeid S, Czubayko F, Aigner A (2005) RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Ther 12:461–466

    Article  CAS  PubMed  Google Scholar 

  • Wade M, Li YC, Wahl GM (2013) MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat Rev Cancer 13:83–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Y, Gilbert JD, Kim JH, Freytag SO (1999) Efficacy of adenovirus-mediated CD/5-FC and HSV-1 thymidine kinase/ganciclovir suicide gene therapies concomitant with p53 gene therapy. Clin Cancer Res 5:4224–4232

    CAS  PubMed  Google Scholar 

  • Yamaizumi M, Mekada E, Uchida T, Okada Y (1978) One molecule of diphtheria toxin fragment A introduced into a cell can kill the cell. Cell 15:245–250

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Kale V, Chen M (2015) Gene-directed enzyme prodrug therapy. AAPS J 17:102–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou H, Marks JW, Hittelman WN, Yagita H, Cheung LH, Rosenblum MG, Winkles JA (2011) Development and characterization of a potent immunoconjugate targeting the Fn14 receptor on solid tumor cells. Mol Cancer Ther 10:1276–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2015R1A6A3A01020598 & NRF-2015R1C1A1A02036781). In addition, this work was partially supported by the NSFC 2013 A3 Foresight Program (81361140344), National Key Basic Research Program of China (2013CB932502), and by National Institutes of Health R01 Grants CA114612. This work was also supported in part by the National Natural Science Foundation of China (NSFC, 81402856).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meong Cheol Shin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Min, K.A., He, H., Yang, V.C. et al. Construction and characterization of gelonin and saporin plasmids for toxic gene-based cancer therapy. Arch. Pharm. Res. 39, 677–686 (2016). https://doi.org/10.1007/s12272-016-0739-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-016-0739-3

Keywords

Navigation