Skip to main content
Log in

A comparative investigation of biochemical and histopathological effects of thiamine and thiamine pyrophosphate on ischemia–reperfusion induced oxidative damage in rat ovarian tissue

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

In this study, the biochemical and histopathological effects of thiamine and thiamine pyrophosphate on ischemia–reperfusion induced oxidative damage in rat ovarian tissue were investigated. Animals were divided into four groups of six rat each, ovarian ischemia–reperfusion (IR), 25 mg/kg thiamine + ovarian ischemia–reperfusion (TIR), 25 mg/kg thiamine pyrophosphate + ovarian ischemia–reperfusion (TPIR) and Sham group (SG). The results of the biochemical experiments have shown that the rat ovarian tissue with thiamine treatment, the level of MDA, GSH and the 8-hydroxyguanine are almost the same as the IR group; while in the group with thiamine pyrophosphate treatment, the level of MDA, GSH and the 8-hydroxyguanine are almost the same as the SG. Ovarian tissue of rats in the IR group were congested and dilated vessels, edema, hemorrhage, necrotic and apoptotic cells. In this group, the migration and the adhesion of the polymorphonuclear leucocytes to the endothelium were observed. Both ovaries in TPIR group, there was no difference according to the SG. Histopathology of ovarian tissues in the TIR group was almost the same with the IR group. Our results indicate that thiamine pyrophosphate significantly prevents the ischemia–reperfusion induced oxidative damage in ovarian tissue, whereas thiamine has no effect. In conclusion, we have found that thiamine pyrophosphate prevents oxidative damage due to ischemia–reperfusion injury, whereas thiamine does not have this effect. Furthermore, we have confirmed that the results of our biochemical analyses are in concordance with the histopathological findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Asami, S., T. Hirano, R. Yamaguchi, Y. Tomioka, H. Itoh, and H. Kasai. 1996. Increase of a type of oxidative DNA damage, 8-hydroxyguanine, and its repair activity in human leukocytes by cigarette smoking. Cancer Research 56: 2546–2549.

    PubMed  CAS  Google Scholar 

  • Bomser, J., D.L. Madhavi, K. Singletary, and M.A. Smith. 1996. In vitro anticancer activity of fruit extracts from Vaccinium species. Planta Medica 62: 212–216.

    Article  PubMed  CAS  Google Scholar 

  • Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Analytical Biochemistry 72: 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Braughler, J.M., and E.D. Hall. 1989. Central nervous system trauma and stroke. I. Biochemical considerations for oxygen radical formation and lipid peroxidation. Free Radical Biology Medicine 6: 289–301.

    Article  PubMed  CAS  Google Scholar 

  • Carrico, C.J., J.L. Meakins, J.C. Marshall, D. Fry, and R.V. Maier. 1986. Multiple-organ-failure syndrome. Archives of Surgery-Chicago 121: 196–216.

    Article  CAS  Google Scholar 

  • Cho, M.Y., S.Y. Park, S. Park, Y.R. Lee, M.K. Kwak, and J.A. Kim. 2012. Effects of geranyl-phloroacetophenone on the induction of apoptosis and chemosensitization of adriamycin-resistant MCF-7 human breast cancer cells. Archives of Pharmacal Research 35: 911–919.

    Article  PubMed  CAS  Google Scholar 

  • Cighetti, G., L. Duca, L. Bortone, S. Sala, I. Nava, G. Fiorelli, and M.D. Cappellini. 2002. Oxidative status and malondialdehyde in beta-thalassaemia patients. European Journal of Clinical Investigation 32(Suppl 1): 55–60.

    Article  PubMed  CAS  Google Scholar 

  • Concannon, M.J., C.G. Kester, C.F. Welsh, and C.L. Puckett. 1992. Patterns of free-radical production after tourniquet ischemia: implications for the hand surgeon. Plastic and Reconstructive Surgery 89: 846–852.

    Article  PubMed  CAS  Google Scholar 

  • Floyd, R.A., J.J. Watson, P.K. Wong, D.H. Altmiller, and R.C. Rickard. 1986. Hydroxyl free radical adduct of deoxyguanosine: sensitive detection and mechanisms of formation. Free Radical Research Communications 1: 163–172.

    Article  PubMed  CAS  Google Scholar 

  • Frangogiannis, N.G. 2007. Chemokines in ischemia and reperfusion. Thrombosis and Haemostasis-Stuttgart 97: 738.

    CAS  Google Scholar 

  • Girotti, A.W. 1998. Lipid hydroperoxide generation, turnover, and effector action in biological systems. Journal of Lipid Research 39: 1529–1542.

    PubMed  CAS  Google Scholar 

  • Ingec, M., U. Isaoglu, M. Yilmaz, M. Calik, B. Polat, H.H. Alp, A. Kurt, C. Gundogdu, and H. Suleyman. 2011. Prevention of ischemia–reperfusion injury in rat ovarian tissue with the on-off method. Journal of Physiology and Pharmacology 62: 575–582.

    PubMed  CAS  Google Scholar 

  • Jennings, R.B., and K.A. Reimer. 1991. The cell biology of acute myocardial ischemia. Annual Review of Medicine 42: 225–246.

    Article  PubMed  CAS  Google Scholar 

  • Kaur, H., and B. Halliwell. 1996. Measurement of oxidized and methylated DNA bases by HPLC with electrochemical detection. Biochem Journal 318(Pt 1): 21–23.

    CAS  Google Scholar 

  • Kharbanda, R.K., M. Peters, B. Walton, M. Kattenhorn, M. Mullen, N. Klein, P. Vallance, J. Deanfield, and R. Macallister. 2001. Ischemic preconditioning prevents endothelial injury and systemic neutrophil activation during ischemia–reperfusion in humans in vivo. Circulation 103: 1624–1630.

    Article  PubMed  CAS  Google Scholar 

  • Kilgore, K.S., and B.R. Lucchesi. 1993. Reperfusion injury after myocardial-infarction-the role of free-radicals and the inflammatory response. Clinical Biochemistry 26: 359–370.

    Article  PubMed  CAS  Google Scholar 

  • Kurt, A., U. Isaoglu, M. Yilmaz, M. Calik, B. Polat, H. Hakan, M. Ingec, and H. Suleyman. 2011. Biochemical and histological investigation of famotidine effect on postischemic reperfusion injury in the rat ovary. Journal of Pediatric Surgery 46: 1817–1823.

    Article  PubMed  Google Scholar 

  • Lin, E., S.F. Lowry, and S.E. Calvano. 1999. The systemic response to ınjury. In Principles of Surgery, 7th ed, ed. S. Si, 13–32. New York: Mc Graw-Hill.

    Google Scholar 

  • Lindsay, T.F., S. Liauw, A.D. Romaschin, and P.M. Walker. 1990. The effect of ischemia/reperfusion on adenine nucleotide metabolism and xanthine oxidase production in skeletal muscle. Journal of Vascular Surgery 12: 8–15.

    PubMed  CAS  Google Scholar 

  • Lopez-Neblina, F., A.J. Paez-Rollys, and L.H. Toledo-Pereyra. 1996. Mechanism of protection of verapamil by preventing neutrophil infiltration in the ischemic rat kidney. Journal of Surgical Research 61: 469–472.

    Article  PubMed  CAS  Google Scholar 

  • Marnett, L.J. 2000. Oxyradicals and DNA damage. Carcinogenesis 21: 361–370.

    Article  PubMed  CAS  Google Scholar 

  • Mccord, J.M. 1985. Oxygen-derived free radicals in postischemic tissue injury. New England Journal of Medicine 312: 159–163.

    Article  PubMed  CAS  Google Scholar 

  • Ohkawa, H., N. Ohishi, and K. Yagi. 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry 95: 351–358.

    Article  PubMed  CAS  Google Scholar 

  • Polat, B., Y. Albayrak, B. Suleyman, H. Dursun, F. Odabasoglu, M. Yigiter, Z. Halici, and H. Suleyman. 2011. Antiulcerative effect of dexmedetomidine on indomethacin-induced gastric ulcer in rats. Pharmacological Reports 63: 518–526.

    PubMed  CAS  Google Scholar 

  • Polat, B., H. Suleyman, and H.H. Alp. 2010. Adaptation of rat gastric tissue against indomethacin toxicity. Chemico-Biological Interactions 186: 82–89.

    Article  PubMed  CAS  Google Scholar 

  • Reiter, R.J., D. Melchiorri, E. Sewerynek, B. Poeggeler, L. Barlowwalden, J.I. Chuang, G.G. Ortiz, and D. Acunacastroviejo. 1995. A review of the evidence supporting melatonins role as an antioxidant. Journal of Pineal Research 18: 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Rock, J.A., and J.D. Thomson. 2003. Surgery for benign diseaseof the ovary: operative gynecology, 9th ed, 648–649. Philadelphia: Lippincott Raven.

    Google Scholar 

  • Ross, D. 1988. Glutathione, free-radicals and chemotherapeutic-agents-mechanisms of free-radical induced toxicity and glutathione-dependent protection. Pharmacology and Therapeutics 37: 231–249.

    Article  PubMed  CAS  Google Scholar 

  • Sedlak, J., and R.H. Lindsay. 1968. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Analytical Biochemistry 25: 192–205.

    Article  PubMed  CAS  Google Scholar 

  • Shigenaga, M.K., E.N. Aboujaoude, Q. Chen, and B.N. Ames. 1994. Assays of oxidative DNA damage biomarkers 8-oxo-2′-deoxyguanosine and 8-oxoguanine in nuclear DNA and biological fluids by high-performance liquid chromatography with electrochemical detection. Methods in Enzymology 234: 16–33.

    Article  PubMed  CAS  Google Scholar 

  • Sozer, S., G. Diniz, and F. Lermioglu. 2011. Effects of celecoxib in young rats: histopathological changes in tissues and alterations of oxidative stress/antioxidant defense system. Archives of Pharmacal Research 34: 253–259.

    Article  PubMed  CAS  Google Scholar 

  • Tok, A., E. Sener, A. Albayrak, N. Cetin, B. Polat, B. Suleyman, F. Akcay, and H. Suleyman. 2012. Effect of mirtazapine on oxidative stress created in rat kidneys by ischemia-reperfusion. Renal Failure 34: 103–110.

    Article  PubMed  CAS  Google Scholar 

  • Trinus, F.P. 1988. Pharmacotherapy. Kiew: Zdorovya.

    Google Scholar 

  • Urso, M.L., and P.M. Clarkson. 2003. Oxidative stress, exercise, and antioxidant supplementation. Toxicology 189: 41–54.

    Article  PubMed  CAS  Google Scholar 

  • Vinten-Johansen, J. 2004. Involvement of neutrophils in the pathogenesis of lethal myocardial reperfusion injury. Cardiovascular Research 61: 481.

    Article  PubMed  CAS  Google Scholar 

  • White, B.C., L.I. Grossman, and G.S. Krause. 1993. Brain injury by global ischemia and reperfusion: a theoretical perspective on membrane damage and repair. Neurology 43: 1656–1665.

    Article  PubMed  CAS  Google Scholar 

  • Wilhelm, J. 1990. Metabolic aspects of membrane lipid peroxidation. Acta Universitatis Carolinae Medica Monographia 137: 1–53.

    PubMed  CAS  Google Scholar 

  • Zimmerman, B.J., and D.N. Granger. 1992. Reperfusion injury. Surgical Clinics of North America 72: 65–83.

    PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Halis Suleyman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demiryilmaz, I., Sener, E., Cetin, N. et al. A comparative investigation of biochemical and histopathological effects of thiamine and thiamine pyrophosphate on ischemia–reperfusion induced oxidative damage in rat ovarian tissue. Arch. Pharm. Res. 36, 1133–1139 (2013). https://doi.org/10.1007/s12272-013-0173-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-013-0173-8

Keywords

Navigation