Skip to main content
Log in

Effects of cysteine on the pharmacokinetics of paclitaxel in rats

  • Research Articles
  • Drug Development
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Paclitaxel is a P-gp substrate and metabolized via CYP2C and 3A subfamily in rats. It has been reported that cysteine causes the changes in expression of CYP isozymes and intestinal P-gp mediated efflux activity in rats. Thus, the effects of cysteine on the pharmacokinetics of intravenous and oral paclitaxel were investigated in rats. After intravenous administration of paclitaxel (30 mg/kg) to control (CON), single cysteine treatment (ST) and cysteine treatment for a week (CT) rats, the pharmacokinetic parameters were comparable among three groups of rats. Also the pharmacokinetic parameters between CON and ST rats were comparable after oral administration of paclitaxel (30 mg/kg) to rats. These results are consistent with that oral cysteine supplement on a single day did not considerably inhibit the metabolism of paclitaxel via hepatic and/or intestinal CYP3A subfamily and P-gp mediated efflux of paclitaxel in the liver and/or intestine both after intravenous and oral administration to rats. After oral administration of paclitaxel (30 mg/kg) to rats, the greater AUC06 h in CT rats was mainly due to that oral cysteine supplement for seven consecutive days enhanced the gastrointestinal absorption of paclitaxel compared with those in CON and ST rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Shawi, M. K., Urbatsch, I. L., and Senior, A. E., Covalent inhibitors of P-glycoprotein ATPase activity. J. Biol. Chem., 269, 8986–8992 (1994).

    PubMed  CAS  Google Scholar 

  • Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72, 248–254 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Chiou, W. L., Critical evaluation of the potential error in pharmacokinetic studies using the linear trapezoidal rule method for the calculation of the area under the plasma level-time curve. J. Pharmacokinet. Biopharm., 6, 539–546 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Chiou, W. L. and Barve, A., Linear correlation of the fraction of oral dose absorbed of 64 drugs between humans and rats. Pharm. Res., 15, 1792–1795 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Cho, M. K., Kim, Y. G., Lee, M. G., and Kim, S. G., Suppression of rat hepatic cytochrome P450s by protein-calorie malnutrition: complete or partial restoration by cysteine or methionine supplementation. Arch. Biochem. Biophys., 372, 150–158 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Choi, J. S. and Li, X., The effect of verapamil on the pharmacokinetics of paclitaxel in rats. Eur. J. Pharm. Sci., 24, 95–100 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Choi, Y. H., Kim, S. G., and Lee, M. G., Dose-independent pharmacokinetics of metformin in rats: hepatic and gastrointestinal first-pass effects. J. Pharm. Sci., 95, 2543–2552 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Choi, Y. H., Lee, I., and Lee, M. G., Effects of cysteine on metformin pharmacokinetics in rats with protein-calorie malnutrition: partial restoration of some parameters to control levels. J. Pharm. Pharmacol., 60, 153–161 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Davies, B. and Morris, T., Physiological parameters in laboratory animals and humans. Pharm. Res., 10, 1093–1095 (1993).

    Article  PubMed  CAS  Google Scholar 

  • DeMario, M. D. and Ratain, M. J., Oral chemotherapy: rationale and future directions. J. Clin. Oncol., 16, 2557–2567 (1998).

    PubMed  CAS  Google Scholar 

  • Duggleby, R. G., Analysis of enzyme progress curves by nonlinear regression. Methods Enzymol., 249, 61–90 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Fagerholm, U., Prediction of human pharmacokinetics-gastrointestinal absorption. J. Pharm. Pharmacol., 59, 905–916 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Föger, F., Schmitz, T., and Bernkop-Schnürch, A., In vivo evaluation of an oral delivery system for P-gp substrates based on thiolated chitosan. Biomaterials, 27, 4250–4255 (2006).

    Article  PubMed  Google Scholar 

  • Gibaldi, M. and Perrier, D., Pharmacokinetics, 2nd Ed. Marcel-Dekker, New York, (1982).

    Google Scholar 

  • Harris, J. W., Rahman, A., Kim, B. R., Guengeric, P., and Collins, J. M., Metabolism of taxol by human hepatic microsomes and liver slices: participation of cytochrome P450 3A4 and an unknown P450 enzyme. Cancer Res., 54, 4026–4035 (1994).

    PubMed  CAS  Google Scholar 

  • Lee, C. K. and Choi, J. S., Effects of silibinin, inhibitor of CYP3A4 and P-glycoprotein in vitro, on the pharmacokinetics of paclitaxel after oral and intravenous administration in rats. Pharmacology, 85, 350–356 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Lee, M. G. and Chiou, W. L., Evaluation of potential causes for the incomplete bioavailability of furosemide: gastric first-pass metabolism. J. Pharmacokinet. Biopharm., 11, 623–640 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Lim, S. C. and Choi, J. S., Effects of maringin on the pharmacokinetics of intravenous paclitaxel in rats. Biopharm. Drug Dispos., 27, 443–447 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Malingré, M. M., Richel, D. J., Beijnen, J. H., Koopman, F. J., Huinink, W. W., Schot, M. E., and Schellens, J. H., Coadministration of cyclosporine strongly enhances the oral bioavailability of docetaxel. J. Clin. Oncol., 19, 1160–1166 (2001).

    PubMed  Google Scholar 

  • Mekhail, T. M. and Markman, D. T., Paclitaxel in cancer therapy. Expert Opin. Pharmacother., 3, 755–766 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Qiang, F., Lee, B. J., Ha, I., Kang, K. W., Woo, E. R., and Han, H. K., Effect of maceligan on the systemic exposure of paclitaxel: in vitro and in vivo evaluation. Eur. J. Pharm. Sci., 41, 226–231 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Rahman, A., Korzekwa, K. R., Gonzalez, F. J., and Harris, J. W., Selective biotransformation of taxol to 6-alpha hydroxytaxol by human cytochrome P450 2C8. Cancer Res., 54, 5543–5546 (1994).

    PubMed  CAS  Google Scholar 

  • Rowinsky, E. K., Wright, M., Monsarrat, B., and Donehower, R. C., Clinical pharmacology and metabolism of taxol (paclitaxel): update. Ann. Oncol., 5, S7–S16 (1994).

    PubMed  Google Scholar 

  • Sonnichsen, D. S., Liu, Q., Schuetz, E. G., Pappo, A., and Relling, M. V., Variability in human cytochrome P450 paclitaxel metabolism. J. Phamracol. Exp. Ther., 27, 566–575 (1995).

    Google Scholar 

  • Soucek, P. and Gut, I., Cytochromes P-450 in rats: structures, functions, properties and relevant human forms. Xenobiotica, 22, 83–103 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Sparreboom, A., van Asperen, J., Mayer, U., Schinkel, A. H., Smit, S. W., Meijer D. K. F., Borst, P., Nooijen, W. J., Beijnen, J. H., and van Tellingen, O., Limited oral bioavailability and active epithelial secretion of paclitaxel caused by P-glycoprotein in the intestine. Proc. Natl. Acad. Sci. U. S. A., 92, 2031–2035 (1997).

    Article  Google Scholar 

  • Stephens, R. H., O’Neill, C. A., Warhurst, A., Carlson, G. L., Rowland, M., and Warhurst, G., Kinetic profiling of Pglycoprotein-mediated drug efflux in rat and human intestinal epithelia. J. Pharmacol. Exp. Ther., 296, 584–591 (2001).

    PubMed  CAS  Google Scholar 

  • Suh, J. H., Kang, H. E., Yoon, I. S., Yang, S. H., Kim, S. H., Lee, H. J., Shim, C. K., and Lee, M. G., Cysteine effects on the pharmacokinetics of etoposide in protein-calorie malnutrition rats: increased gastrointestinal absorption by cysteine. Xenobiotica, 41, 885–894 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Thummel, K. E., Gut instincts: CYP3A4 and intestinal drug metabolism. J. Clin. Invest., 117, 3173–3176 (2007).

    Article  PubMed  CAS  Google Scholar 

  • van Waterschoot, R. A., Lagas, J. S., Wagenaar, E., van der Kruijssen, C. M., van Herwaarden, A. E., Song, J. Y., Rooswinkel, R. W., van Tellingen, O., Rosing, H., Beijnen, J. H., and Schinkel, A. H., Absence of both cytochrome P450 3A and P-glycoprotein dramatically increases docetaxel oral bioavailability and risk of intestinal toxicity. Cancer Res., 23, 8996–9002 (2009).

    Article  Google Scholar 

  • Walle, T., Walle, U. K., Kuma, G. N., and Bhalla, K. N., Taxol metabolism and disposition in cancer patients. Drug Metab. Dispos., 23, 506–512 (1995).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Hee Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, Y.K., Han, S.Y., Chin, YW. et al. Effects of cysteine on the pharmacokinetics of paclitaxel in rats. Arch. Pharm. Res. 35, 509–516 (2012). https://doi.org/10.1007/s12272-012-0314-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-012-0314-5

Key words

Navigation