Skip to main content
Log in

Inhibitory effects of sepiapterin on vascular endothelial growth factor-a-induced proliferation and adhesion in human umbilical vein endothelial cells

  • Research Articles
  • Drug Actions
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Tetrahydrobiopterin (BH4) has been known to be an essential cofactor for the activities of nitric oxide (NO) synthase and aromatic amino acid hydroxylases, which are involved in physiological and pathological processes. In the present study, we report that sepiapterin, the more stable form of BH4 precursor, modulates vascular endothelial growth factor-A (VEGF-A)-induced cell proliferation and adhesion in human umbilical vein endothelial cells (HUVECs). The antiproliferative activity of sepiapterin in VEGF-A-treated HUVECs is associated with inhibition of the expression of cyclin-dependent kinases (Cdks) such as Cdk4 and Cdk2. Pretreatment with NO synthase inhibitor does not abrogate the ability of sepiapterin to inhibit VEGF-A-induced cell proliferation and adhesion, indicating that the suppressive effects of sepiapterin on VEGF-Ainduced responses are mediated by NO-independent mechanism. Finally, we show that sepiapterin modulates VEGF-A-induced cell proliferation and adhesion through down-regulation of VEGF receptor-2 downstream signaling pathways. Taken together, these findings represent a novel function of sepiapterin in the regulation of angiogenesis, supporting further development and evaluation of sepiapterin as an antiangiogenic agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alper, O., Bergmann-Leitner, E. S., Bennett, T. A., Hacker, N. F., Stromberg, K., and Stetler-Stevenson, W. G., Epidermal growth factor receptor signaling and the invasive phenotype of ovarian carcinoma cells. J. Natl. Cancer Inst., 93, 1375–1384 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Baker, A. H., Edwards, D. R., and Murphy, G., Metalloproteinase inhibitors: biological actions and therapeutic opportunities. J. Cell Sci., 115, 3719–3727 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Bourboulia, D. and Stetler-Stevenson, W. G., Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs): Positive and negative regulators in tumor cell adhesion. Semin. Cancer Biol., 20, 161–168 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Brew, K. and Nagase, H., The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity. Biochim. Biophys. Acta, 1803, 55–71 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet, P. and Jain, R. K., Angiogenesis in cancer and other diseases. Nature, 407, 249–257 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Chen, L., Zeng, X., Wang, J., Briggs, S. S., O’Neill, E., Li, J., Leek, R., Kerr, D. J., Harris, A. L., and Cai, S., Roles of tetrahydrobiopterin in promoting tumor angiogenesis. Am. J. Pathol., 177, 2671–2680 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Cho, Y. R., Kim, S. H., Ko, H. Y., Kim, M. D., Choi, S. W., and Seo, D. W., Sepiapterin inhibits cell proliferation and migration of ovarian cancer cells via down-regulation of p70S6K-dependent VEGFR-2 expression. Oncol. Rep., 26, 861–867 (2011).

    PubMed  CAS  Google Scholar 

  • Christofori, G., New signals from the invasive front. Nature, 441, 444–450 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Ferrara, N., Gerber, H. P., and LeCouter, J., The biology of VEGF and its receptors. Nat. Med., 9, 669–676 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Folkman, J., Angiogenesis. Annu. Rev. Med., 57, 1–18 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Gao, L., Pung, Y. F., Zhang, J., Chen, P., Wang, T., Li, M., Meza, M., Toro, L., and Cai, H., Sepiapterin reductase regulation of endothelial tetrahydrobiopterin and nitric oxide bioavailability. Am. J. Physiol. Heart Circ. Physiol., 297, H331–H339 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Gumbiner, B. M., Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell, 84, 345–357 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Holmes, K., Roberts, O. L., Thomas, A. M., and Cross, M. J., Vascular endothelial growth factor receptor-2: structure, function, intracellular signaling and therapeutic inhibition. Cell. Signal., 19, 2003–2012 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Jiang, X., Kim, B., Lin, H., Lee, C. K., Kim, J., Kang, H., Lee, P., Jung, S. H., Lee, H. M., and Won, K. J., Tetrahydrobiopterin inhibits PDGF-stimulated migration and proliferation in rat aortic smooth muscle cells via the nitric oxide synthase-independent pathway. Korean J. Physiol. Pharmacol., 14, 177–183 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Katusic, Z. S., d’Uscio, L. V., and Nath, K. A., Vascular protection by tetrahydrobiopterin: progress and therapeutic prospects. Trends Pharmacol. Sci., 30, 48–54 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Kimura, H., Weisz, A., Kurashima, Y., Hashimoto, K., Ogura, T., D’Acquisto, F., Addeo, R., Makuuchi, M., and Esumi, H., Hypoxia response element of the human vascular endothelial growth factor gene mediates transcriptional regulation by nitric oxide: control of hypoxia-inducible factor-1 activity by nitric oxide. Blood, 95, 189–197 (2000).

    PubMed  CAS  Google Scholar 

  • Lamy, S., Lachambre, M. P., Lord-Dufour, S., and Beliveau, R., Propranolol suppresses angiogenesis in vitro: inhibition of proliferation, migration, and differentiation of endothelial cells. Vascul. Pharmacol., 53, 200–208 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Malumbres, M. and Barbacid, M., Cell cycle, CDKs and cancer: a changing paradigm. Nat. Rev. Cancer, 9, 153–166 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Milkiewicz, M., Hudlicka, O., Brown, M. D., and Silgram, H., Nitric oxide, VEGF, and VEGFR-2: interactions in activityinduced angiogenesis in rat skeletal muscle. Am. J. Physiol. Heart Circ. Physiol., 289, H336–H343 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Oh, J., Seo, D. W., Diaz, T., Wei, B., Ward, Y., Ray, J. M., Morioka, Y., Shi, S., Kitayama, H., Takahashi, C., Noda, M., and Stetler-Stevenson, W. G., Tissue inhibitors of metalloproteinase 2 inhibits endothelial cell migration through increased expression of RECK. Cancer Res., 64, 9062–9069 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Pannirselvam, M., Wiehler, W. B., Anderson, T., and Triggle, C. R., Enhanced vascular reactivity of small mesenteric arteries from diabetic mice is associated with enhanced oxidative stress and cyclooxygenase products. Br. J. Pharmacol., 144, 953–960 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Seo, D. W., Li, H., Guedez, L., Wingfield, P. T., Diaz, T., Salloum, R., Wei, B. Y., and Stetler-Stevenson, W. G., TIMP-2 mediated inhibition of angiogenesis: an MMPindependent mechanism. Cell, 114, 171–180 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Seo, D. W., Li, H., Qu, C. K., Oh, J., Kim, Y. S., Diaz, T., Wei, B., Han, J. W., and Stetler-Stevenson, W. G., Shp-1 mediates the antiproliferative activity of tissue inhibitor of metalloproteinase-2 in human microvascular endothelial cells. J. Biol. Chem., 281, 3711–3721 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Seo, D. W., Kim, S. H., Eom, S. H., Yoon, H. J., Cho, Y. R., Kim, P. H., Kim, Y. K., Han, J. W., Diaz, T., Wei, B. Y., and Stetler-Stevenson, W. G., TIMP-2 disrupts FGF-2-induced downstream signaling pathways. Microvasc. Res., 76, 145–151 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Spannuth, W. A., Sood, A. K., and Coleman, R. L., Angiogenesis as a strategic target for ovarian cancer therapy. Nat. Clin. Pract. Oncol., 5, 194–204 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Stetler-Stevenson, W. G., and Seo, D. W., TIMP-2: an endogenous inhibitor of angiogenesis. Trends Mol. Med., 11, 97–103 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Stetler-Stevenson, W. G., Tissue inhibitors of metalloproteinases in cell signaling: metalloproteinase-independent biological activities. Sci. Signal., 1, re6 (2008).

    Google Scholar 

  • Thony, B., Auerbach, G., and Blau, N., Tetrahydrobiopterin biosynthesis, regeneration and functions. Biochem. J., 347 Pt1, 1–16 (2000).

    Article  Google Scholar 

  • Wingfield, P. T., Sax, J. K., Stahl, S. J., Kaufman, J., Palmer, I., Chung, V., Corcoran, M. L., Kleiner, D. E., and Stetler-Stevenson, W. G., Biophysical and functional characterization of full-length, recombinant human tissue inhibitor of metalloproteinases-2 (TIMP-2) produced in Escherichia coli. Comparison of wild type and amino-terminal alanine appended variant with implications for the mechanism of TIMP functions. J. Biol. Chem., 274, 21362–21368 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Ziche, M., Morbidelli, L., Choudhuri, R., Zhang, H. T., Donnini, S., Granger, H. J., and Bicknell, R., Nitric oxide synthase lies downstream from vascular endothelial growth factor-induced but not basic fibroblast growth factorinduced angiogenesis. J. Clin. Invest., 99, 2625–2634 (1997).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shin Wook Choi or Dong-Wan Seo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S.H., Cho, YR., Kim, MD. et al. Inhibitory effects of sepiapterin on vascular endothelial growth factor-a-induced proliferation and adhesion in human umbilical vein endothelial cells. Arch. Pharm. Res. 34, 1571–1577 (2011). https://doi.org/10.1007/s12272-011-0920-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-011-0920-7

Key words

Navigation