Skip to main content
Log in

Role of nonsteroidal anti-inflammatory drug-activated gene-1 in docetaxel-induced cell death of human colorectal cancer cells with different p53 status

  • Drug Actions
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Nonsteroidal anti-inflammatory drug-activated gene-1 (NAG-1) expression is upregulated not only by NSAIDs such as sulindac sulfide, but also by several antitumorigenic dietary compounds, suggesting that NAG-1 is a specific target for the development of effective anticancer agents. Despite being a downstream target of p53, NAG-1 induction is both p53-dependent and p53-independent. It is not clear whether NAG-1 induction is the responsible factor in cancer cell apoptosis with mutated p53. In this study, we report that NAG-1 induction alone cannot determine apoptotic cell fate in colon cancer cells. Although docetaxel induced an increase in NAG-1 and apoptosis in both HCT-116 (wild-type p53) and HT-29 (mutant p53) colon cancer cells, NAG-1 knockdown with siRNA prevented docetaxel-induced cell death in only HCT-116 cells. Docetaxel decreased Bcl-2 in HCT-116 cells, which have functionally active p53, according to luciferase reporter gene analyses, and docetaxel-induced cell death and changes in Bcl-2 and NAG-1 expression were blocked by PFT-α, a p53 inhibitor. In HT-29 cells with functionally inactive p53, the docetaxel-induced Bcl-xL decrease, NAG-1 increase, and cell death were not blocked by PFT-α. On the other hand, sulindac sulfide at concentrations that significantly induced NAG-1 did not decrease cell viability comparable to docetaxel, and it did not affect the level of p53, Bax, Bcl-2, and Bcl-xL in either cell line. The present study demonstrates that p53-dependent NAG-1 induction is linked to cell death and that NAG-1 induction without accompanying alteration of antiapoptosis protein Bcl-2 family members may not lead to cancer cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Baek, S. J., Kim, K. S., Nixon, J. B., Wilson, L. C., and Eling, T. E., Cyclooxygenase inhibitors regulate the expression of a TGF-β superfamily member that has proapoptotic and antitumorigenic activities. Mol. Pharmacol., 59, 901–908 (2001).

    PubMed  CAS  Google Scholar 

  • Baek, S. J., Wilson, L. C., and Eling, T. E., Resveratrol enhances the expression of non-steroidal anti-inflammatory drug-activated gene (NAG-1) by increasing the expression of p53. Carcinogenesis, 23, 425–434 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Baek, S. J., Kim, J., Nixon, J. B., DiAugustine, R. P., and Eling, T. E., Expression of NAG-1, a transforming growth factor-β superfamily member, by troglitazone requires the early growth response gene EGR-1. J. Biol. Chem., 279, 6883–6892 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Baek, S. J., Okazaki, R., Lee, S. H., Martinez, J., Kim, J. S., Yamaguchi, K., Mishina, Y., Martin, D. W., Shoieb, A., McEntee, M. F., and Eling, T. E., Nonsteroidal anti-inflammatory drug-activated gene-1 over expression in transgenic mice suppresses intestinal neoplasia. Gastroenterology, 131, 1553–1560 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Boolbol, S. K., Dannenberg, A. J., Chadburn, A., Martucci, C., Guo, X. J., Ramonetti, J. T., Abreu-Goris, M., Newmark, H. L., Lipkin, M. L., DeCosse, J. J., and Bertagnolli, M. M., Cyclooxygenase-2 overexpression and tumor formation are blocked by sulindac in a murine model of familial adenomatous polyposis. Cancer Res., 56, 2556–2560 (1996).

    PubMed  CAS  Google Scholar 

  • Botton, F. G. Jr., Baek, S. J., Jennifer, B. N., and Thomas, E. E., Diallyl Disulfide (DADS) induces the antitumorigenic NSAID-activated gene (NAG-1) by a p53-dependent mechanism in human colorectal HCT 116 cells. J. Nutr., 132, 773–778 (2002).

    Google Scholar 

  • Boyle, J. O., Hakim, J., Koch, W., van der Riet, P., Hruban, R. H., Roa, R. A., Correo, R., Eby, Y. J., Ruppert, J. M., and Sidransky, D., The incidence of p53 mutations increases with progression of head and neck cancer. Cancer Res., 53, 4477–4480 (1993).

    PubMed  CAS  Google Scholar 

  • Colevas, A. D., Norris, C. M., Tishler, R. B., Fried, M. P., Gomolin, H. I., Amrein, P., Nixon, A., Lamb, C., Costello, R., Barton, J., Read, R., Adak, S., and Posner, M. R., Phase II trial of docetaxel, cisplatin, fluorouracil, and leucovorin as induction for squamous cell carcinoma of the head and neck. J. Clin. Oncol., 17, 3503–3511 (1999).

    PubMed  CAS  Google Scholar 

  • Eisenhauer, E. A. and Vermorken, J. B., The taxoids: Comparative clinical pharmacology and therapeutic potential. Drugs, 55, 5–30 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Eling, T. E., Baek, S. J., Shim, M. S., and Lee, C. H., NSAID activated gene (NAG-1), a modulator of tumorigenesis. J. Biochem. Mol. Biol., 39, 649–655 (2006).

    PubMed  CAS  Google Scholar 

  • Hanif, R., Pittas, A., Feng, Y., Koutsos, M. I., Qiao, L., Staiano-Coico, L., Shiff, S. I., and Rigas, B., Effects of nonsteroidal anti-inflam matory drugs on proliferation and on induction of apoptosis in colon cancer cells by a prostaglandin-independent pathway. Biochem. Pharmacol., 52, 237–245 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Herschman, H. R., Prostaglandin synthase 2. Biochim. Biophys. Acta, 1299, 125–140 (1996).

    PubMed  Google Scholar 

  • Huang, Y., He, Q., Hillman, M. J., Rong, R., and Sheikh, M. S., Sulindac sulfide-induced apoptosis involves death receptor 5 and the caspase 8-dependent pathway in human colon and prostate cancer cells. Cancer Res., 61, 6918–6924 (2001).

    PubMed  CAS  Google Scholar 

  • Iguchi, G., Chrysovergis, K., Lee, S. H., Baek, S. J., Langenbach, R., and Eling, T. E., A reciprocal relationship exists between non-steroidal anti-inflammatory drugactivated gene-1 (NAG-1) and cyclooxygenase-2. Cancer Lett., 282, 152–158 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Kelly, J. A., Lucia, M. S., and Lambert, J. R., p53 controls prostate-derived factor/macrophage inhibitory cytokine/NSAID-activated gene expression in response to cell density, DNA damage and hypoxia through diverse mechanisms. Cancer Lett., 277, 38–47 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Köhne, C. H., Schöffski, P., Wilke, H., Käufer, C., Andreesen, R., Ohl, U., Klaasen, U., Westerhausen, M., Hiddemann, W., Schott, G., Harstick, A., Bade, J., Horster, A., Schubert, U., Hecker, H., Dörken, B., and Schmoll, H. J., Effective biomodulation by leucovorin of high-dose infusion fluorouracil given as a weekly 24-hour infusion: results of a randomized trial in patients with advanced colorectal cancer. J. Clin. Oncol., 16, 418–426 (1998).

    PubMed  Google Scholar 

  • Komarov, P. G., Komarova, E. A., Kondratov, R. V., Christov-Tselkov, K., Coon, J. S., Chernov, M. V., and Gudkov, A. V., A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science, 285, 1733–1737 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Lee, S. H., Kim, J. S., Yamaguchi, K., Eling, T. E., and Baek, S. J., Indole-3-carbinol and 3,3′-diindolylmethane induce expression of NAG-1 in a p53-independent manner. Biochem. Biophys. Res. Commun., 328, 63–69 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Lee, S. H., Yamaguchi, K., Kim, J. S., Eling, T. E., Safe, S., Park, Y., and Baek, S. J., Conjugated linoleic acid stimulates an anti-tumorigenic protein NAG-1 in an isomer specific manner. Carcinogenesis, 27, 972–981 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Leigh, C. W., Baek, S. J., Allison, C., and Thomas, E. E., Nonsteroidal anti-inflammatory drug-activated gene (NAG-1) is induced by genistein through the expression of p53 in colorectal cancer cells. Int. J. Cancer, 105, 747–753 (2003).

    Article  Google Scholar 

  • Lyseng-Williamson, K. A. and Fenton, C., Docetaxel: a review of its use in metastatic breast cancer. Drugs, 65, 2513–2531 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Murphy, V. J., Yang, Z., Rorison, K. A., and Baldwin, G. S., Cyclooxygenase-2-selective antagonists do not inhibit growth of colorectal carcinoma cell lines. Cancer Lett., 122, 25–30 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Patsos, H. A., Hicks, D. J., Greenhough, A., Williams, A. C., and Paraskeva, C., Cannabinoids and cancer: potential for colorectal cancer therapy. Biochem. Soc. Trans., 33, 712–714 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Shiff, S. J., Qiao, L., Tsai, L. L., and Rigas, B., Sulindac sulfide, an aspirin-like compound, inhibits proliferation, causes cell cycle quiescence, and induces apoptosis in HT-29 colon adenocarcinoma cells. J. Clin. Invest., 96, 491–503 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Schiff, S. J., Koutsos, M. I., Qiao, L., and Rigas, B., Nonsteroidal antiinflammatory drugs inhibit the proliferation of colon adenocarcinoma cells: effects in cell cycle and apoptosis. Exp. Cell Res., 222, 179–188 (1996).

    Article  Google Scholar 

  • Taketo, M. M., Cyclooxygenase-2 inhibitors in tumorigenesis (part I). J. Natl. Cancer Inst., 90, 1529–1536 (1998a).

    Article  PubMed  CAS  Google Scholar 

  • Taketo, M. M., Cyclooxygenase-2 inhibitors in tumorigenesis (part II). J. Natl. Cancer Inst., 90, 1609–1620 (1998b).

    Article  PubMed  CAS  Google Scholar 

  • Tannock, I. F., de Wit, R., Berry, W. R., Horti, J., Pluzanska, A., Kim, N. C., Oudard, S., Theodore, C., James, N. D., Turesson, I., Rosenthal, M. A., and Eisenberger, M. A., Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N. Engl. J. Med., 351, 1502–1512 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Wang, D. and Dubois, R. N., The role of COX-2 in intestinal inflammation and colorectal cancer. Oncogene, 29, 781–788 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Wang, L. G., Liu, X. M., Kreis, W., and Budman, D. R., The effect of antimicrotubule agents on signal transduction pathways of apoptosis: a review. Cancer Chemother. Pharmacol., 44, 355–361 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Watson, A. J., Chemopreventive effects of NSAIDs against colorectal cancer: Regulation of apoptosis and mitosis by COX-1 and COX-2. Histol. Histopathol., 13, 591–597 (1998).

    PubMed  CAS  Google Scholar 

  • Wilson, L. C., Baek, S. J., Call, A., and Eling, T. E., Nonsteroidal anti-inflammatory drug-activated gene (NAG-1) is induced by genistein through the expression of p53 in colorectal cancer cells. Int. J. Cancer, 105, 747–753 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Yvon, A. M., Wadsworth, P., and Jordan, M. A., Taxol suppresses dynamics of individual microtubules in living human tumor cells. Mol. Biol. Cell, 10, 947–959 (1999).

    PubMed  CAS  Google Scholar 

  • Zhang, L., Yu, J., Park, B. H., Kinzler, K. W., and Vogelstein, B., Role of BAX in the apoptotic response to anticancer agents. Science, 290, 989–992 (2000).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Ae Kim.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, IY., Park, SY., Kang, Y. et al. Role of nonsteroidal anti-inflammatory drug-activated gene-1 in docetaxel-induced cell death of human colorectal cancer cells with different p53 status. Arch. Pharm. Res. 34, 323–330 (2011). https://doi.org/10.1007/s12272-011-0219-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-011-0219-8

Key words

Navigation