Skip to main content
Log in

Die Wege zu den Raumstrukturen von Proteinen und Nukleinsäuren

  • Wissenschaft
  • Expert‘s view: Strukturbiologie
  • Published:
BIOspektrum Aims and scope

Abstract

Atomic structures of large biological molecules were first established by scattering X-rays in protein crystals and later with crystals of nucleic acids. Good crystals allow for an accuracy of 0.1 Å (10−11 m) that may reveal details of catalytic processes. The novel cryo-electronmicroscopy method does not need crystals, it can establish chain folds confidently. Chain folds can also be derived from NMR data producing numerous binary atomic distances. Recently, chain folds for a given amino acid sequence were derived by mere computing, based on the large fundus of structurally related proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Literatur

  1. Hünefeld FL (1840) Der Chemismus in der thierischen Organisation. Brockhaus, Leipzig, 158–163

    Google Scholar 

  2. Hoppe-Seyler F (1862) Über das Verhalten des Blutfarbstoffs im Spektrum des Sonnenlichtes. Virchows Archiv 23: 446–449

    Article  Google Scholar 

  3. Miescher JF (1871) De Über die chemische Zusammensetzung der Eiterzellen. Medicinisch-chemische Untersuchungen (ed. Hoppe-Seyler) 4: 441–460

  4. Vonrhein C, Schlauderer GJ, Schulz GE (1995) Movie of the structural changes during a catalytic cycle of nucleoside monophosphate kinases. Structure 3: 483–490

    Article  CAS  PubMed  Google Scholar 

  5. Astbury WT, Street A (1931) X-Ray Studies of the Structure of Hair, Wool, and Related Fibers. Phil Trans Roy Soc London A 230: 75–101

    Article  Google Scholar 

  6. Bernal JD, Crowfoot D (1934) X-Ray Photographs of Crystalline Pepsin. Nature 133: 794–795

    Article  CAS  Google Scholar 

  7. Bokhoven C, Schoone JC, Bijvoet JM (1951) The Fourier Synthesis of the Crystal Structure of Strychnine Sulphate Pentahydrate. Acta Cryst 4: 275–280

    Article  CAS  Google Scholar 

  8. Bragg L, Perutz MF (1954) The Structure of Haemoglobin VI. Fourier Projection on the 010 Plane. Proc Roy Soc London 225: 315–329

    CAS  Google Scholar 

  9. Kendrew JC, Dickerson RE, Strandberg BE et al. (1960) Structure of Myoglobin. A Three-dimensional Fourier Synthesis at 2 Å Resolution. Nature 185: 422–427

    Article  CAS  PubMed  Google Scholar 

  10. Blake CCF, Koenig DF et al., Phillips DC (1965) Structure of Hen Egg-white Lysozyme. A Three-dimensional Fourier Synthesis at 2Å Resolution. Nature 206: 757–761

    Article  CAS  PubMed  Google Scholar 

  11. Michel H (1982) Three-dimensional Crystals of a Membrane Protein Complex. J Mol Biol 158: 567–572

    Article  CAS  PubMed  Google Scholar 

  12. Derrington IM, Butler TZ, Collins MD et al. (2010) Nanopore DNA sequencing with MspA. Proc Natl Acad Sci USA 107: 16060–16065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Faller M, Niederweis M, Schulz GE (2004) The structure of a mycobacterial outer membrane channel. Science 303: 1189–1192

    Article  CAS  PubMed  Google Scholar 

  14. Astbury WT, Bell FO (1938) X-Ray Study of Thymonucleic Acid. Nature 141: 747–748

    Article  CAS  Google Scholar 

  15. Chargaff E, Lipshitz R, Green C et al. (1951) The Composition of the Desoxyribonucleic Acid of Salmon Sperm. J Biol Chem 192: 223–230

    Article  CAS  PubMed  Google Scholar 

  16. Cramer F, von der Haar F, et al. Schulz GE (1970) Crystallization of phenylalanine specific transfer ribonucleic acid. J Mol Biol 51: 523–530

    Article  CAS  PubMed  Google Scholar 

  17. Kim SH, Quigley GJ et al. Rich A (1973) Three-Dimensional Structure of Yeast Phenylalanine Transfer-RNA. Folding of the Polynucleotide Chain. Science 179: 285–288

    Article  CAS  PubMed  Google Scholar 

  18. Schulz GE (1974) Wird die Röntgenstrukturanalyse von Proteinen überflüssig? Nachr Chem Techn 22: 431–432

    Article  Google Scholar 

  19. Schulz GE, Barry CD, Friedmann J et al. (1974) Comparison of predicted and experimentally determined secondary structure of adenylate kinase. Nature 250: 140–142

    Article  CAS  PubMed  Google Scholar 

  20. Moult J, Pedersen JT, Judson R et al. (1995) A Large-Scale Experiment to Assess Protein Structure Prediction Methods. Proteins: Struc Func Genet 23: ii–v

    Article  CAS  Google Scholar 

  21. Jumper J, Evans R et al. Hassabis D (2021) Highly Accurate Protein Structure Prediction with AlphaFold. Nature 596: 583–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Eine Text-orientierte ausführlichere Liste wird auf Anfrage vom Autor zugesandt.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg E. Schulz.

Additional information

Georg E. Schulz 1958–1964 Physikstudium an TU Berlin und der Universität Heidelberg. 1966 Promotion in Physik bei Prof. Dr. O. Haxel an der Universität Heidelberg. 1967–1968 Postdoc bei Dr. H. Wyckoff an der Yale University, USA. 1968–1983 Mitarbeiter in der Abteilung Holmes im Max-Planck-Institut für Medizinische Forschung in Heidelberg. 1983 Habilitation in Biophysik an der Universität Heidelberg. 1984–2007 C4-Professor für Biochemie an der Universität Freiburg. Seit 1998 Mitglied der Leopoldina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schulz, G.E. Die Wege zu den Raumstrukturen von Proteinen und Nukleinsäuren. Biospektrum 29, 118–122 (2023). https://doi.org/10.1007/s12268-023-1909-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12268-023-1909-8

Navigation