Skip to main content

Advertisement

Log in

Advances in Metabolic Remodeling and Intervention Strategies in Heart Failure

  • Review
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

The heart is the most energy-demanding organ throughout the whole body. Perturbations or failure in energy metabolism contributes to heart failure (HF), which represents the advanced stage of various heart diseases. The poor prognosis and huge economic burden associated with HF underscore the high unmet need to explore novel therapies targeting metabolic modulators beyond conventional approaches focused on neurohormonal and hemodynamic regulators. Emerging evidence suggests that alterations in metabolic substrate reliance, metabolic pathways, metabolic by-products, and energy production collectively regulate the occurrence and progression of HF. In this review, we provide an overview of cardiac metabolic remodeling, encompassing the utilization of free fatty acids, glucose metabolism, ketone bodies, and branched-chain amino acids both in the physiological condition and heart failure. Most importantly, the latest advances in pharmacological interventions are discussed as a promising therapeutic approach to restore cardiac function, drawing insights from recent basic research, preclinical and clinical studies.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BCAA:

Branched-chain amino acids

CoQ:

Coenzyme Q10

CPT1:

Carnitine palmitoyl transferase-1

DCA:

Dichloroacetate

ETC:

Electron transport chain

FFA:

Free fatty acids

GLP-1:

Glucagon-like peptide-1

GLUT:

Glucose transporter

GRK2:

G protein-coupled receptor kinase 2

MCD:

Malonyl CoA decarboxylase

NR:

Nicotinamide riboside

PDH:

Glucose dehydrogenase enzyme

PDK:

Pyruvate dehydrogenase kinases

PPAR:

Peroxisome proliferator-activated receptor

ROS:

Reactive oxygen species

SGLT-2:

Sodium-glucose cotransporter-2

SIRT3:

Sirtuin family member sirtuin-3

TCA:

Tricarboxylic acid

β-OHB:

β-Hydroxybutyrate

References

  1. Ziaeian B, Fonarow GC. Epidemiology and aetiology of heart failure. Nat Rev Cardiol. 2016;13(6):368–78. https://doi.org/10.1038/nrcardio.2016.25.

    Article  PubMed  PubMed Central  Google Scholar 

  2. McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;42(36):3599–726. https://doi.org/10.1093/eurheartj/ehab368.

    Article  CAS  PubMed  Google Scholar 

  3. Neubauer S. The failing heart--an engine out of fuel. New Engl J Med. 2007;356(11):1140–51. https://doi.org/10.1056/NEJMra063052.

    Article  PubMed  Google Scholar 

  4. Bertero E, Maack C. Metabolic remodelling in heart failure. Nat Rev Cardiol. 2018;15(8):457–70. https://doi.org/10.1038/s41569-018-0044-6.

    Article  CAS  PubMed  Google Scholar 

  5. Karwi QG, Uddin GM, Ho KL, Lopaschuk GD. Loss of metabolic flexibility in the failing heart. Front Cardiovasc Med. 2018;5:68. https://doi.org/10.3389/fcvm.2018.00068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev. 2005;85(3):1093–129. https://doi.org/10.1152/physrev.00006.2004.

    Article  CAS  PubMed  Google Scholar 

  7. Nakamura M, Sadoshima J. Cardiomyopathy in obesity, insulin resistance and diabetes. J Physiol. 2020;598(14):2977–93. https://doi.org/10.1113/jp276747.

    Article  CAS  PubMed  Google Scholar 

  8. Jia G, Hill MA, Sowers JR. Diabetic cardiomyopathy: an update of mechanisms contributing to this clinical entity. Circ Res. 2018;122(4):624–38. https://doi.org/10.1161/circresaha.117.311586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Doenst T, Pytel G, Schrepper A, Amorim P, Färber G, Shingu Y, et al. Decreased rates of substrate oxidation ex vivo predict the onset of heart failure and contractile dysfunction in rats with pressure overload. Cardiovasc Res. 2010;86(3):461–70. https://doi.org/10.1093/cvr/cvp414.

    Article  CAS  PubMed  Google Scholar 

  10. Lopaschuk GD, Karwi QG, Tian R, Wende AR, Abel ED. Cardiac energy metabolism in heart failure. Circ Res. 2021;128(10):1487–513. https://doi.org/10.1161/circresaha.121.318241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. De Jong KA, Lopaschuk GD. Complex energy metabolic changes in heart failure with preserved ejection fraction and heart failure with reduced ejection fraction. Can J Cardiol. 2017;33(7):860–71. https://doi.org/10.1016/j.cjca.2017.03.009.

    Article  PubMed  Google Scholar 

  12. Sack MN, Rader TA, Park S, Bastin J, McCune SA, Kelly DP. Fatty acid oxidation enzyme gene expression is downregulated in the failing heart. Circulation. 1996;94(11):2837–42. https://doi.org/10.1161/01.cir.94.11.2837.

    Article  CAS  PubMed  Google Scholar 

  13. Heather LC, Cole MA, Lygate CA, Evans RD, Stuckey DJ, Murray AJ, et al. Fatty acid transporter levels and palmitate oxidation rate correlate with ejection fraction in the infarcted rat heart. Cardiovasc Res. 2006;72(3):430–7. https://doi.org/10.1016/j.cardiores.2006.08.020.

    Article  CAS  PubMed  Google Scholar 

  14. Kato T, Niizuma S, Inuzuka Y, Kawashima T, Okuda J, Tamaki Y, et al. Analysis of metabolic remodeling in compensated left ventricular hypertrophy and heart failure. Circ Heart Failure. 2010;3(3):420–30. https://doi.org/10.1161/circheartfailure.109.888479.

    Article  PubMed  Google Scholar 

  15. Osorio JC, Stanley WC, Linke A, Castellari M, Diep QN, Panchal AR, et al. Impaired myocardial fatty acid oxidation and reduced protein expression of retinoid X receptor-alpha in pacing-induced heart failure. Circulation. 2002;106(5):606–12. https://doi.org/10.1161/01.cir.0000023531.22727.c1.

    Article  CAS  PubMed  Google Scholar 

  16. Tuunanen H, Engblom E, Naum A, Någren K, Hesse B, Airaksinen KE, et al. Free fatty acid depletion acutely decreases cardiac work and efficiency in cardiomyopathic heart failure. Circulation. 2006;114(20):2130–7. https://doi.org/10.1161/circulationaha.106.645184.

    Article  CAS  PubMed  Google Scholar 

  17. Lahey R, Wang X, Carley AN, Lewandowski ED. Dietary fat supply to failing hearts determines dynamic lipid signaling for nuclear receptor activation and oxidation of stored triglyceride. Circulation. 2014;130(20):1790–9. https://doi.org/10.1161/circulationaha.114.011687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Voros G, Ector J, Garweg C, Droogne W, Van Cleemput J, Peersman N, et al. Increased cardiac uptake of ketone bodies and free fatty acids in human heart failure and hypertrophic left ventricular remodeling. Circ Heart Failure. 2018;11(12):e004953. https://doi.org/10.1161/circheartfailure.118.004953.

    Article  CAS  PubMed  Google Scholar 

  19. Opie LH, Knuuti J. The adrenergic-fatty acid load in heart failure. J Am Coll Cardiol. 2009;54(18):1637–46. https://doi.org/10.1016/j.jacc.2009.07.024.

    Article  CAS  PubMed  Google Scholar 

  20. Doehner W, Frenneaux M, Anker SD. Metabolic impairment in heart failure: the myocardial and systemic perspective. J Am Coll Cardiol. 2014;64(13):1388–400. https://doi.org/10.1016/j.jacc.2014.04.083.

    Article  PubMed  Google Scholar 

  21. Murashige D, Jang C, Neinast M, Edwards JJ, Cowan A, Hyman MC, et al. Comprehensive quantification of fuel use by the failing and nonfailing human heart. Science (New York, NY). 2020;370(6514):364–8. https://doi.org/10.1126/science.abc8861.

    Article  ADS  CAS  Google Scholar 

  22. Kolwicz SC Jr, Purohit S, Tian R. Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circ Res. 2013;113(5):603–16. https://doi.org/10.1161/circresaha.113.302095.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang L, Jaswal JS, Ussher JR, Sankaralingam S, Wagg C, Zaugg M, et al. Cardiac insulin-resistance and decreased mitochondrial energy production precede the development of systolic heart failure after pressure-overload hypertrophy. Circ Heart Failure. 2013;6(5):1039–48. https://doi.org/10.1161/circheartfailure.112.000228.

    Article  CAS  PubMed  Google Scholar 

  24. Zhabyeyev P, Gandhi M, Mori J, Basu R, Kassiri Z, Clanachan A, et al. Pressure-overload-induced heart failure induces a selective reduction in glucose oxidation at physiological afterload. Cardiovasc Res. 2013;97(4):676–85. https://doi.org/10.1093/cvr/cvs424.

    Article  CAS  PubMed  Google Scholar 

  25. Diakos NA, Navankasattusas S, Abel ED, Rutter J, McCreath L, Ferrin P, et al. Evidence of glycolysis up-regulation and pyruvate mitochondrial oxidation mismatch during mechanical unloading of the failing human heart: implications for cardiac reloading and conditioning. JACC Basic Transl Sci. 2016;1(6):432–44. https://doi.org/10.1016/j.jacbts.2016.06.009.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Randle PJ, Garland PB, Hales CN, Newsholme EA. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet (London, England). 1963;1(7285):785–9. https://doi.org/10.1016/s0140-6736(63)91500-9.

    Article  CAS  PubMed  Google Scholar 

  27. Cluntun AA, Badolia R, Lettlova S, Parnell KM, Shankar TS, Diakos NA, et al. The pyruvate-lactate axis modulates cardiac hypertrophy and heart failure. Cell Metabol. 2021;33(3):629–48.e10. https://doi.org/10.1016/j.cmet.2020.12.003.

    Article  CAS  Google Scholar 

  28. Lahey R, Carley AN, Wang X, Glass CE, Accola KD, Silvestry S, et al. Enhanced redox state and efficiency of glucose oxidation with miR based suppression of maladaptive NADPH-dependent malic enzyme 1 expression in hypertrophied hearts. Circ Res. 2018;122(6):836–45. https://doi.org/10.1161/circresaha.118.312660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yuko AE, Carvalho Rigaud VO, Kurian J, Lee JH, Kasatkin N, Behanan M, et al. LIN28a induced metabolic and redox regulation promotes cardiac cell survival in the heart after ischemic injury. Redox Biol. 2021;47:102162. https://doi.org/10.1016/j.redox.2021.102162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ma H, Yu S, Liu X, Zhang Y, Fakadej T, Liu Z, et al. Lin28a regulates pathological cardiac hypertrophic growth through Pck2-mediated enhancement of anabolic synthesis. Circulation. 2019;139(14):1725–40. https://doi.org/10.1161/circulationaha.118.037803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tran DH, May HI, Li Q, Luo X, Huang J, Zhang G, et al. Chronic activation of hexosamine biosynthesis in the heart triggers pathological cardiac remodeling. Nat Commun. 2020;11(1):1771. https://doi.org/10.1038/s41467-020-15640-y.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Baba SP, Zhang D, Singh M, Dassanayaka S, Xie Z, Jagatheesan G, et al. Deficiency of aldose reductase exacerbates early pressure overload-induced cardiac dysfunction and autophagy in mice. J Mol Cell Cardiol. 2018;118:183–92. https://doi.org/10.1016/j.yjmcc.2018.04.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ritterhoff J, Tian R. Metabolism in cardiomyopathy: every substrate matters. Cardiovasc Res. 2017;113(4):411–21. https://doi.org/10.1093/cvr/cvx017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Aubert G, Martin OJ, Horton JL, Lai L, Vega RB, Leone TC, et al. The failing heart relies on ketone bodies as a fuel. Circulation. 2016;133(8):698–705. https://doi.org/10.1161/circulationaha.115.017355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bedi KC Jr, Snyder NW, Brandimarto J, Aziz M, Mesaros C, Worth AJ, et al. Evidence for intramyocardial disruption of lipid metabolism and increased myocardial ketone utilization in advanced human heart failure. Circulation. 2016;133(8):706–16. https://doi.org/10.1161/circulationaha.115.017545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schugar RC, Moll AR, André d'Avignon D, Weinheimer CJ, Kovacs A, Crawford PA. Cardiomyocyte-specific deficiency of ketone body metabolism promotes accelerated pathological remodeling. Mol Metabol. 2014;3(7):754–69. https://doi.org/10.1016/j.molmet.2014.07.010.

    Article  CAS  Google Scholar 

  37. Taegtmeyer H, Harinstein ME, Gheorghiade M. More than bricks and mortar: comments on protein and amino acid metabolism in the heart. Am J Cardiol. 2008;101(11a):3e–7e. https://doi.org/10.1016/j.amjcard.2008.02.064.

    Article  CAS  PubMed  Google Scholar 

  38. Lai L, Leone TC, Keller MP, Martin OJ, Broman AT, Nigro J, et al. Energy metabolic reprogramming in the hypertrophied and early stage failing heart: a multisystems approach. Circ Heart Failure. 2014;7(6):1022–31. https://doi.org/10.1161/circheartfailure.114.001469.

    Article  CAS  PubMed  Google Scholar 

  39. Sansbury BE, DeMartino AM, Xie Z, Brooks AC, Brainard RE, Watson LJ, et al. Metabolomic analysis of pressure-overloaded and infarcted mouse hearts. Circ Heart Failure. 2014;7(4):634–42. https://doi.org/10.1161/circheartfailure.114.001151.

    Article  CAS  PubMed  Google Scholar 

  40. Sun H, Olson KC, Gao C, Prosdocimo DA, Zhou M, Wang Z, et al. Catabolic defect of branched-chain amino acids promotes heart failure. Circ. 2016;133(21):2038–49. https://doi.org/10.1161/circulationaha.115.020226.

    Article  CAS  Google Scholar 

  41. Li T, Zhang Z, Kolwicz SC Jr, Abell L, Roe ND, Kim M, et al. Defective branched-chain amino acid catabolism disrupts glucose metabolism and sensitizes the heart to ischemia-reperfusion injury. Cell Metabol. 2017;25(2):374–85. https://doi.org/10.1016/j.cmet.2016.11.005.

    Article  CAS  Google Scholar 

  42. Zhou B, Tian R. Mitochondrial dysfunction in pathophysiology of heart failure. J Clin Invest. 2018;128(9):3716–26. https://doi.org/10.1172/jci120849.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kannel WB, Hjortland M, Castelli WP. Role of diabetes in congestive heart failure: the Framingham study. Am J Cardiol. 1974;34(1):29–34. https://doi.org/10.1016/0002-9149(74)90089-7.

    Article  CAS  PubMed  Google Scholar 

  44. Kannel WB, McGee DL. Diabetes and cardiovascular disease. The Framingham study. JAMA. 1979;241(19):2035–8. https://doi.org/10.1001/jama.241.19.2035.

    Article  CAS  PubMed  Google Scholar 

  45. Suskin N, McKelvie RS, Burns RJ, Latini R, Pericak D, Probstfield J, et al. Glucose and insulin abnormalities relate to functional capacity in patients with congestive heart failure. Eur Heart J. 2000;21(16):1368–75. https://doi.org/10.1053/euhj.1999.2043.

    Article  CAS  PubMed  Google Scholar 

  46. Chokshi A, Drosatos K, Cheema FH, Ji R, Khawaja T, Yu S, et al. Ventricular assist device implantation corrects myocardial lipotoxicity, reverses insulin resistance, and normalizes cardiac metabolism in patients with advanced heart failure. Circulation. 2012;125(23):2844–53. https://doi.org/10.1161/circulationaha.111.060889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Riehle C, Abel ED. Insulin signaling and heart failure. Circ Res. 2016;118(7):1151–69. https://doi.org/10.1161/circresaha.116.306206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Byrne NJ, Levasseur J, Sung MM, Masson G, Boisvenue J, Young ME, et al. Normalization of cardiac substrate utilization and left ventricular hypertrophy precede functional recovery in heart failure regression. Cardiovasc Res. 2016;110(2):249–57. https://doi.org/10.1093/cvr/cvw051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Holubarsch CJ, Rohrbach M, Karrasch M, Boehm E, Polonski L, Ponikowski P, Rhein S. A double-blind randomized multicentre clinical trial to evaluate the efficacy and safety of two doses of etomoxir in comparison with placebo in patients with moderate congestive heart failure: the ERGO (etomoxir for the recovery of glucose oxidation) study. Clin Sci. 2007;113(4):205–12.

    Article  CAS  Google Scholar 

  50. S S-S, science HCJC. First clinical trial with etomoxir in patients with chronic congestive heart failure. 2000;99(1):27–35. https://doi.org/10.1042/cs19990235.

  51. Beadle RM, Williams LK, Kuehl M, Bowater S, Abozguia K, Leyva F, Yousef Z, Wagenmakers AJ, Thies F, Horowitz J, Frenneaux MP. Improvement in cardiac energetics by perhexiline in heart failure due to dilated cardiomyopathy. JACC: Heart Failure. 2015;3(3):202–11. https://doi.org/10.1016/j.jchf.2014.09.009.

    Article  PubMed  Google Scholar 

  52. Ren Z, Chen S, Seo JE, Guo X, Li D, Ning B, et al. Mitochondrial dysfunction and apoptosis underlie the hepatotoxicity of perhexiline. Toxicol Vitro : an Int J Published in Assoc with BIBRA. 2020;69:104987. https://doi.org/10.1016/j.tiv.2020.104987.

    Article  CAS  Google Scholar 

  53. Fragasso G, Rosano G, Baek SH, Sisakian H, Di Napoli P, Alberti L, et al. Effect of partial fatty acid oxidation inhibition with trimetazidine on mortality and morbidity in heart failure: results from an international multicentre retrospective cohort study. Int J Cardiol. 2013;163(3):320–5. https://doi.org/10.1016/j.ijcard.2012.09.123.

    Article  PubMed  Google Scholar 

  54. Maier LS, Layug B, Karwatowska-Prokopczuk E, Belardinelli L, Lee S, Sander J, et al. RAnoLazIne for the treatment of diastolic heart failure in patients with preserved ejection fraction: the RALI-DHF proof-of-concept study. JACC Heart failure. 2013;1(2):115–22. https://doi.org/10.1016/j.jchf.2012.12.002.

    Article  PubMed  Google Scholar 

  55. Bersin RM, Wolfe C, Kwasman M, Lau D, Klinski C, Tanaka K, et al. Improved hemodynamic function and mechanical efficiency in congestive heart failure with sodium dichloroacetate. J Am Coll Cardiol. 1994;23(7):1617–24. https://doi.org/10.1016/0735-1097(94)90665-3.

    Article  CAS  PubMed  Google Scholar 

  56. Kosiborod MN, Jhund PS, Docherty KF, Diez M, Petrie MC, Verma S, et al. Effects of dapagliflozin on symptoms, function, and quality of life in patients with heart failure and reduced ejection fraction: results from the DAPA-HF trial. Circulation. 2020;141(2):90–9. https://doi.org/10.1161/circulationaha.119.044138.

    Article  CAS  PubMed  Google Scholar 

  57. Mudaliar S, Alloju S, Henry RR. Can a shift in fuel energetics explain the beneficial cardiorenal outcomes in the EMPA-REG OUTCOME study? A unifying hypothesis. Diab Care. 2016;39(7):1115–22. https://doi.org/10.2337/dc16-0542.

    Article  CAS  Google Scholar 

  58. Neal B, Perkovic V, Matthews DR. Canagliflozin and cardiovascular and renal events in type 2 diabetes. New Engl Med. 2017;377(21):2099. https://doi.org/10.1056/NEJMc1712572.

    Article  Google Scholar 

  59. Nielsen R, Jorsal A, Iversen P, Tolbod LP, Bouchelouche K, Sørensen J, et al. Effect of liraglutide on myocardial glucose uptake and blood flow in stable chronic heart failure patients: a double-blind, randomized, placebo-controlled LIVE sub-study. J Nucl Cardiol : Official Public Am Soc Nucl Cardiol. 2019;26(2):585–97. https://doi.org/10.1007/s12350-017-1000-2.

    Article  Google Scholar 

  60. Voors AA, Bax JJ, Hernandez AF, Wirtz AB, Pap AF, Ferreira AC, et al. Safety and efficacy of the partial adenosine A1 receptor agonist neladenoson bialanate in patients with chronic heart failure with reduced ejection fraction: a phase IIb, randomized, double-blind, placebo-controlled trial. Eur J Heart Fail. 2019;21(11):1426–33. https://doi.org/10.1002/ejhf.1591.

    Article  CAS  PubMed  Google Scholar 

  61. Mortensen SA, Rosenfeldt F, Kumar A, Dolliner P, Filipiak KJ, Pella D, et al. The effect of coenzyme Q10 on morbidity and mortality in chronic heart failure: results from Q-SYMBIO: a randomized double-blind trial. JACC Heart failure. 2014;2(6):641–9. https://doi.org/10.1016/j.jchf.2014.06.008.

    Article  PubMed  Google Scholar 

  62. Bayram M, St Cyr JA, Abraham WT. D-ribose aids heart failure patients with preserved ejection fraction and diastolic dysfunction: a pilot study. Therap Adv Cardiovasc Dis. 2015;9(3):56–65. https://doi.org/10.1177/1753944715572752.

    Article  CAS  Google Scholar 

  63. Pierce JD, Shen Q, Mahoney DE, Rahman F, Krueger KJ, Diaz FJ, et al. Effects of ubiquinol and/or D-ribose in patients with heart failure with preserved ejection fraction. Am J Cardiol. 2022;176:79–88. https://doi.org/10.1016/j.amjcard.2022.04.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Takata M, Amiya E, Watanabe M, Hosoya Y, Nakayama A, Fujiwara T, et al. An exploratory study on the efficacy and safety of a BCAA preparation used in combination with cardiac rehabilitation for patients with chronic heart failure. BMC Cardiovasc Disord. 2017;17(1):205. https://doi.org/10.1186/s12872-017-0639-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Nielsen R, Møller N, Gormsen LC, Tolbod LP, Hansson NH, Sorensen J, et al. Cardiovascular effects of treatment with the ketone body 3-hydroxybutyrate in chronic heart failure patients. Circulation. 2019;139(18):2129–41. https://doi.org/10.1161/circulationaha.118.036459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang W, Zhang L, Battiprolu PK, Fukushima A, Nguyen K, Milner K, et al. Malonyl CoA decarboxylase inhibition improves cardiac function post-myocardial infarction. JACC Basic Transl Sci. 2019;4(3):385–400. https://doi.org/10.1016/j.jacbts.2019.02.003.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Lam VH, Zhang L, Huqi A, Fukushima A, Tanner BA, Onay-Besikci A, Keung W, Kantor PF, Jaswal JS, Rebeyka IM, Lopaschuk GD. Activating PPARα Prevents Post–Ischemic Contractile Dysfunction in Hypertrophied Neonatal Hearts. Circ Res. 2015;117(1):41–51. https://doi.org/10.1161/circresaha.117.306585.

    Article  CAS  PubMed  Google Scholar 

  68. Liu J, Wang P, Luo J, Huang Y, He L, Yang H, et al. Peroxisome proliferator-activated receptor β/δ activation in adult hearts facilitates mitochondrial function and cardiac performance under pressure-overload condition. Hypertension (Dallas, Tex : 1979). 2011;57(2):223–30. https://doi.org/10.1161/hypertensionaha.110.164590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Schumacher SM, Gao E, Zhu W, Chen X, Chuprun JK, Feldman AM, et al. Paroxetine-mediated GRK2 inhibition reverses cardiac dysfunction and remodeling after myocardial infarction. Sci Transl Med. 2015;7(277):277ra31. https://doi.org/10.1126/scitranslmed.aaa0154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ciccarelli M, Sorriento D, Fiordelisi A, Gambardella J, Franco A, Del Giudice C, et al. Pharmacological inhibition of GRK2 improves cardiac metabolism and function in experimental heart failure. ESC Heart Fail. 2020; https://doi.org/10.1002/ehf2.12706.

  71. Abd Alla J, Graemer M, Fu X, Quitterer U. Inhibition of G-protein-coupled receptor kinase 2 prevents the dysfunctional cardiac substrate metabolism in fatty acid synthase transgenic mice. J Biol Chem. 2016;291(6):2583–600. https://doi.org/10.1074/jbc.M115.702688.

    Article  CAS  PubMed  Google Scholar 

  72. Uddin GM, Zhang L, Shah S, Fukushima A, Wagg CS, Gopal K, et al. Impaired branched chain amino acid oxidation contributes to cardiac insulin resistance in heart failure. Cardiovasc Diabetol. 2019;18(1):86. https://doi.org/10.1186/s12933-019-0892-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chen H, Chen C, Spanos M, Li G, Lu R, Bei Y, et al. Exercise training maintains cardiovascular health: signaling pathways involved and potential therapeutics. Signal Transduct Target Ther. 2022;7(1):306. https://doi.org/10.1038/s41392-022-01153-1.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Shimada YJ, Batra J, Kochav SM, Patel P, Jung J, Maurer MS, et al. Difference in metabolomic response to exercise between patients with and without hypertrophic cardiomyopathy. J Cardiovasc Transl Res. 2021;14(2):246–55. https://doi.org/10.1007/s12265-020-10051-2.

    Article  PubMed  Google Scholar 

  75. Wu H, Zhu Q, Cai M, Tong X, Liu D, Huang J, et al. Effect of inhibiting malonyl-CoA decarboxylase on cardiac remodeling after myocardial infarction in rats. Cardiology. 2014;127(4):236–44. https://doi.org/10.1159/000356471.

    Article  CAS  PubMed  Google Scholar 

  76. Singh S, Schwarz K, Horowitz J, Frenneaux M. Cardiac energetic impairment in heart disease and the potential role of metabolic modulators: a review for clinicians. Circ Cardiovasc Gen. 2014;7(5):720–8. https://doi.org/10.1161/circgenetics.114.000221.

    Article  CAS  Google Scholar 

  77. Kennedy JA, Unger SA, Horowitz JD. Inhibition of carnitine palmitoyltransferase-1 in rat heart and liver by perhexiline and amiodarone. Biochem Pharmacol. 1996;52(2):273–80. https://doi.org/10.1016/0006-2952(96)00204-3.

    Article  CAS  PubMed  Google Scholar 

  78. Yin X, Dwyer J, Langley SR, Mayr U, Xing Q, Drozdov I, et al. Effects of perhexiline-induced fuel switch on the cardiac proteome and metabolome. J Mol Cell Cardiol. 2013;55:27–30. https://doi.org/10.1016/j.yjmcc.2012.12.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Turcani M, Rupp H. Etomoxir improves left ventricular performance of pressure-overloaded rat heart. Circulation. 1997;96(10):3681–6. https://doi.org/10.1161/01.cir.96.10.3681.

    Article  CAS  PubMed  Google Scholar 

  80. Abozguia K, Elliott P, McKenna W, Phan TT, Nallur-Shivu G, Ahmed I, et al. Metabolic modulator perhexiline corrects energy deficiency and improves exercise capacity in symptomatic hypertrophic cardiomyopathy. Circulation. 2010;122(16):1562–9. https://doi.org/10.1161/circulationaha.109.934059.

    Article  CAS  PubMed  Google Scholar 

  81. Lee L, Campbell R, Scheuermann-Freestone M, Taylor R, Gunaruwan P, Williams L, et al. Metabolic modulation with perhexiline in chronic heart failure: a randomized, controlled trial of short-term use of a novel treatment. Circulation. 2005;112(21):3280–8. https://doi.org/10.1161/circulationaha.105.551457.

    Article  CAS  PubMed  Google Scholar 

  82. Failure CTJJH. Perhexiline: lessons for heart failure therapeutics. 2015;3(3):212–3. https://doi.org/10.1016/j.jchf.2014.12.005.

  83. Gatto GJ Jr, Ao Z, Kearse MG, Zhou M, Morales CR, Daniels E, et al. NADPH oxidase-dependent and -independent mechanisms of reported inhibitors of reactive oxygen generation. J Enzyme Inhibition Med Chem. 2013;28(1):95–104. https://doi.org/10.3109/14756366.2011.636360.

    Article  CAS  Google Scholar 

  84. Stanley WC, Morgan EE, Huang H, McElfresh TA, Sterk JP, Okere IC, et al. Malonyl-CoA decarboxylase inhibition suppresses fatty acid oxidation and reduces lactate production during demand-induced ischemia. Am J Physiol Heart Circ Physiol. 2005;289(6):H2304–9. https://doi.org/10.1152/ajpheart.00599.2005.

    Article  CAS  PubMed  Google Scholar 

  85. Fillmore N, Lopaschuk GD. Targeting mitochondrial oxidative metabolism as an approach to treat heart failure. Biochim Biophys Acta. 2013;1833(4):857–65. https://doi.org/10.1016/j.bbamcr.2012.08.014.

    Article  CAS  PubMed  Google Scholar 

  86. Tuunanen H, Engblom E, Naum A, Någren K, Scheinin M, Hesse B, et al. Trimetazidine, a metabolic modulator, has cardiac and extracardiac benefits in idiopathic dilated cardiomyopathy. Circulation. 2008;118(12):1250–8. https://doi.org/10.1161/circulationaha.108.778019.

    Article  CAS  PubMed  Google Scholar 

  87. Fragasso G, Salerno A, Lattuada G, Cuko A, Calori G, Scollo A, Ragogna F, Arioli F, Bassanelli G, Spoladore R, Luzi L. Effect of partial inhibition of fatty acid oxidation by trimetazidine on whole body energy metabolism in patients with chronic heart failure. Heart. 2011;97(18):1495–500. https://doi.org/10.1136/hrt.2011.226332.

    Article  CAS  PubMed  Google Scholar 

  88. Di Napoli P, Taccardi AA, Barsotti A. Long term cardioprotective action of trimetazidine and potential effect on the inflammatory process in patients with ischaemic dilated cardiomyopathy. Heart (British Cardiac Society). 2005;91(2):161–5. https://doi.org/10.1136/hrt.2003.031310.

    Article  CAS  PubMed  Google Scholar 

  89. Vitale C, Wajngaten M, Sposato B, Gebara O, Rossini P, Fini M, et al. Trimetazidine improves left ventricular function and quality of life in elderly patients with coronary artery disease. Eur Heart J. 2004;25(20):1814–21. https://doi.org/10.1016/j.ehj.2004.06.034%JEuropeanHeartJournal.

    Article  CAS  PubMed  Google Scholar 

  90. BROTTIER L, BARAT JL, COMBE C, BOUSSENS B, BONNET J, BRICAUD H. Therapeutic value of a cardioprotective agent in patients with severe ischaemic cardiomyopathy. Eur Heart J. 1990;11(3):207–12. https://doi.org/10.1093/oxfordjournals.eurheartj.a059685%JEuropeanHeartJournal.

    Article  CAS  PubMed  Google Scholar 

  91. Winter JL, Castro PF, Quintana JC, Altamirano R, Enriquez A, Verdejo HE, et al. Effects of trimetazidine in nonischemic heart failure: a randomized study. J Card Fail. 2014;20(3):149–54. https://doi.org/10.1016/j.cardfail.2014.01.004.

    Article  CAS  PubMed  Google Scholar 

  92. Morrow DA, Scirica BM, Sabatine MS, de Lemos JA, Murphy SA, Jarolim P, et al. B-type natriuretic peptide and the effect of ranolazine in patients with non-ST-segment elevation acute coronary syndromes: observations from the MERLIN-TIMI 36 (Metabolic Efficiency With Ranolazine for Less Ischemia in Non-ST Elevation Acute Coronary-Thrombolysis In Myocardial Infarction 36) trial. J Am Coll Cardiol. 2010;55(12):1189–96. https://doi.org/10.1016/j.jacc.2009.09.068.

    Article  CAS  PubMed  Google Scholar 

  93. Beadle R, Frenneaux M. Magnetic resonance spectroscopy in myocardial disease. Expert Rev Cardiovasc Therapy. 2010;8(2):269–77. https://doi.org/10.1586/erc.09.169.

    Article  Google Scholar 

  94. Wang GT, Li H, Yu ZQ, He XN. Effects of ranolazine on cardiac function in rats with heart failure. Eur Rev Med Pharmacol Sci. 2019;23(21):9625–32. https://doi.org/10.26355/eurrev_201911_19456.

    Article  PubMed  Google Scholar 

  95. Nie J, Duan Q, He M, Li X, Wang B, Zhou C, et al. Ranolazine prevents pressure overload-induced cardiac hypertrophy and heart failure by restoring aberrant Na(+) and Ca(2+) handling. J Cellul Physiol. 2019;234(7):11587–601. https://doi.org/10.1002/jcp.27791.

    Article  CAS  Google Scholar 

  96. Montaigne D, Butruille L, Staels B. PPAR control of metabolism and cardiovascular functions. Nat Rev Cardiol. 2021;18(12):809–23. https://doi.org/10.1038/s41569-021-00569-6.

    Article  CAS  PubMed  Google Scholar 

  97. Son NH, Park TS, Yamashita H, Yokoyama M, Huggins LA, Okajima K, et al. Cardiomyocyte expression of PPARgamma leads to cardiac dysfunction in mice. J Clin Invest. 2007;117(10):2791–801. https://doi.org/10.1172/jci30335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sarma S, Ardehali H, Gheorghiade M. Enhancing the metabolic substrate: PPAR-alpha agonists in heart failure. Heart Fail Rev. 2012;17(1):35–43. https://doi.org/10.1007/s10741-010-9208-0.

    Article  CAS  PubMed  Google Scholar 

  99. Gross B, Pawlak M, Lefebvre P, Staels B. PPARs in obesity-induced T2DM, dyslipidaemia and NAFLD. Nat Rev Endocrinol. 2017;13(1):36–49. https://doi.org/10.1038/nrendo.2016.135.

    Article  CAS  PubMed  Google Scholar 

  100. Kaimoto S, Hoshino A, Ariyoshi M, Okawa Y, Tateishi S, Ono K, et al. Activation of PPAR-α in the early stage of heart failure maintained myocardial function and energetics in pressure-overload heart failure. Am J Physiol Heart Circ Physiol. 2017;312(2):H305–h13. https://doi.org/10.1152/ajpheart.00553.2016.

    Article  PubMed  Google Scholar 

  101. Cheng KC, Chang WT, Li Y, Cheng YZ, Cheng JT, Chen ZC. GW0742 activates peroxisome proliferator-activated receptor δ to reduce free radicals and alleviate cardiac hypertrophy induced by hyperglycemia in cultured H9c2 cells. J Cellul Biochem. 2018;119(11):9532–42. https://doi.org/10.1002/jcb.27270.

    Article  CAS  Google Scholar 

  102. Pradhan AD, Paynter NP, Everett BM, Glynn RJ, Amarenco P, Elam M, et al. Rationale and design of the Pemafibrate to Reduce Cardiovascular Outcomes by Reducing Triglycerides in Patients with Diabetes (PROMINENT) study. Am Heart J. 2018;206:80–93. https://doi.org/10.1016/j.ahj.2018.09.011.

    Article  CAS  PubMed  Google Scholar 

  103. Patel MS, Nemeria NS, Furey W, Jordan F. The pyruvate dehydrogenase complexes: structure-based function and regulation. J Biol Chem. 2014;289(24):16615–23. https://doi.org/10.1074/jbc.R114.563148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Heggermont WA, Papageorgiou AP, Heymans S, van Bilsen M. Metabolic support for the heart: complementary therapy for heart failure? Eur J Heart Fail. 2016;18(12):1420–9. https://doi.org/10.1002/ejhf.678.

    Article  PubMed  Google Scholar 

  105. Sheeran FL, Angerosa J, Liaw NY, Cheung MM, Pepe S. Adaptations in protein expression and regulated activity of pyruvate dehydrogenase multienzyme complex in human systolic heart failure. Oxid Med Cellul Longevity. 2019;2019:4532592. https://doi.org/10.1155/2019/4532592.

    Article  CAS  Google Scholar 

  106. Bøgh N, Hansen ESS, Omann C, Lindhardt J, Nielsen PM, Stephenson RS, et al. Increasing carbohydrate oxidation improves contractile reserves and prevents hypertrophy in porcine right heart failure. Sci Rep. 2020;10(1):8158. https://doi.org/10.1038/s41598-020-65098-7.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  107. Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. New Engl J Med. 2020;383(15):1413–24. https://doi.org/10.1056/NEJMoa2022190.

    Article  CAS  PubMed  Google Scholar 

  108. Anker SD, Butler J, Filippatos G, Ferreira JP, Bocchi E, Böhm M, et al. Empagliflozin in heart failure with a preserved ejection fraction. New Engl J Med. 2021;385(16):1451–61. https://doi.org/10.1056/NEJMoa2107038.

    Article  CAS  PubMed  Google Scholar 

  109. Joshi SS, Singh T, Newby DE, Singh J. Sodium-glucose co-transporter 2 inhibitor therapy: mechanisms of action in heart failure. Heart (British Cardiac Society). 2021;107(13):1032–8. https://doi.org/10.1136/heartjnl-2020-318060.

    Article  CAS  PubMed  Google Scholar 

  110. Lehrke M. SGLT2 Inhibition: changing what fuels the heart. J Am Coll Cardiol. 2019;73(15):1945–7. https://doi.org/10.1016/j.jacc.2019.02.023.

    Article  PubMed  Google Scholar 

  111. Correale M, Lamacchia O, Ciccarelli M, Dattilo G, Tricarico L, Brunetti ND. Vascular and metabolic effects of SGLT2i and GLP-1 in heart failure patients. Heart Fail Rev. 2021; https://doi.org/10.1007/s10741-021-10157-y.

  112. Chen M, Gao C, Yu J, Ren S, Wang M, Wynn RM, et al. Therapeutic effect of targeting branched-chain amino acid catabolic flux in pressure-overload induced heart failure. J Am Heart Assoc. 2019;8(11):e011625. https://doi.org/10.1161/jaha.118.011625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wang W, Zhang F, Xia Y, Zhao S, Yan W, Wang H, et al. Defective branched chain amino acid catabolism contributes to cardiac dysfunction and remodeling following myocardial infarction. Am J Physiol Heart Circ Physiol. 2016;311(5):H1160–h9. https://doi.org/10.1152/ajpheart.00114.2016.

    Article  PubMed  Google Scholar 

  114. D'Antona G, Ragni M, Cardile A, Tedesco L, Dossena M, Bruttini F, et al. Branched-chain amino acid supplementation promotes survival and supports cardiac and skeletal muscle mitochondrial biogenesis in middle-aged mice. Cell Metabol. 2010;12(4):362–72. https://doi.org/10.1016/j.cmet.2010.08.016.

    Article  CAS  Google Scholar 

  115. Tanada Y, Shioi T, Kato T, Kawamoto A, Okuda J, Kimura T. Branched-chain amino acids ameliorate heart failure with cardiac cachexia in rats. Life Sci. 2015;137:20–7. https://doi.org/10.1016/j.lfs.2015.06.021.

    Article  CAS  PubMed  Google Scholar 

  116. Moberly SP, Mather KJ, Berwick ZC, Owen MK, Goodwill AG, Casalini ED, et al. Impaired cardiometabolic responses to glucagon-like peptide 1 in obesity and type 2 diabetes mellitus. Basic Res Cardiol. 2013;108(4):365. https://doi.org/10.1007/s00395-013-0365-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Aravindhan K, Bao W, Harpel MR, Willette RN, Lepore JJ, Jucker BM. Cardioprotection resulting from glucagon-like peptide-1 administration involves shifting metabolic substrate utilization to increase energy efficiency in the rat heart. PloS One. 2015;10(6):e0130894. https://doi.org/10.1371/journal.pone.0130894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JF, Nauck MA, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. New Engl J Med. 2016;375(4):311–22. https://doi.org/10.1056/NEJMoa1603827.

    Article  CAS  PubMed  Google Scholar 

  119. Jorsal A, Kistorp C, Holmager P, Tougaard RS, Nielsen R, Hänselmann A, et al. Effect of liraglutide, a glucagon-like peptide-1 analogue, on left ventricular function in stable chronic heart failure patients with and without diabetes (LIVE)-a multicentre, double-blind, randomised, placebo-controlled trial. Eur J Heart Fail. 2017;19(1):69–77. https://doi.org/10.1002/ejhf.657.

    Article  CAS  PubMed  Google Scholar 

  120. Margulies KB, Hernandez AF, Redfield MM, Givertz MM, Oliveira GH, Cole R, et al. Effects of liraglutide on clinical stability among patients with advanced heart failure and reduced ejection fraction: a randomized clinical trial. JAMA. 2016;316(5):500–8. https://doi.org/10.1001/jama.2016.10260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Legchenko E, Chouvarine P, Borchert P, Fernandez-Gonzalez A, Snay E, Meier M, et al. PPARγ agonist pioglitazone reverses pulmonary hypertension and prevents right heart failure via fatty acid oxidation. Sci Transl Med. 2018;10(438) https://doi.org/10.1126/scitranslmed.aao0303.

  122. Clarke GD, Solis-Herrera C, Molina-Wilkins M, Martinez S, Merovci A, Cersosimo E, et al. Pioglitazone improves left ventricular diastolic function in subjects with diabetes. Diabetes Care. 2017;40(11):1530–6. https://doi.org/10.2337/dc17-0078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. DeFronzo RA, Inzucchi S, Abdul-Ghani M, Nissen SE. Pioglitazone: the forgotten, cost-effective cardioprotective drug for type 2 diabetes. Diab Vasc Dis Res. 2019;16(2):133–43. https://doi.org/10.1177/1479164118825376.

    Article  CAS  PubMed  Google Scholar 

  124. DePaoli AM, Higgins LS, Henry RR, Mantzoros C, Dunn FL. Can a selective PPARγ modulator improve glycemic control in patients with type 2 diabetes with fewer side effects compared with pioglitazone? Diab Care. 2014;37(7):1918–23. https://doi.org/10.2337/dc13-2480.

    Article  CAS  Google Scholar 

  125. Koch WJ, Rockman HA, Samama P, Hamilton RA, Bond RA, Milano CA, et al. Cardiac function in mice overexpressing the beta-adrenergic receptor kinase or a beta ARK inhibitor. Science (New York, NY). 1995;268(5215):1350–3. https://doi.org/10.1126/science.7761854.

    Article  ADS  CAS  Google Scholar 

  126. Sorriento D, Ciccarelli M, Cipolletta E, Trimarco B, Iaccarino G. "Freeze, Don't Move": how to arrest a suspect in heart failure—a review on available GRK2 inhibitors. Front Cardiovasc Med. 2016;3:48. https://doi.org/10.3389/fcvm.2016.00048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Thal DM, Homan KT, Chen J, Wu EK, Hinkle PM, Huang ZM, et al. Paroxetine is a direct inhibitor of g protein-coupled receptor kinase 2 and increases myocardial contractility. ACS Chem Biol. 2012;7(11):1830–9. https://doi.org/10.1021/cb3003013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Pilgrim T, Vollenbroich R, Deckarm S, Gräni C, Dobner S, Stark AW, et al. Effect of paroxetine-mediated g-protein receptor kinase 2 inhibition vs placebo in patients with anterior myocardial infarction: a randomized clinical trial. JAMA Cardiol. 2021;6(10):1171–6. https://doi.org/10.1001/jamacardio.2021.2247.

    Article  PubMed  Google Scholar 

  129. Birkenfeld AL, Jordan J, Dworak M, Merkel T, Burnstock G. Myocardial metabolism in heart failure: purinergic signalling and other metabolic concepts. Pharmacol Ther. 2019;194:132–44. https://doi.org/10.1016/j.pharmthera.2018.08.015.

    Article  CAS  PubMed  Google Scholar 

  130. Dinh W, Albrecht-Küpper B, Gheorghiade M, Voors AA, van der Laan M, Sabbah HN. Partial adenosine A1 agonist in heart failure. Handbook Exp Pharmacol. 2017;243:177–203. https://doi.org/10.1007/164_2016_83.

    Article  CAS  Google Scholar 

  131. Voors AA, Shah SJ, Bax JJ, Butler J, Gheorghiade M, Hernandez AF, et al. Rationale and design of the phase 2b clinical trials to study the effects of the partial adenosine A1-receptor agonist neladenoson bialanate in patients with chronic heart failure with reduced (PANTHEON) and preserved (PANACHE) ejection fraction. Eur J Heart Fail. 2018;20(11):1601–10. https://doi.org/10.1002/ejhf.1295.

    Article  CAS  PubMed  Google Scholar 

  132. Stone TW, Ceruti S, Abbracchio MP. Adenosine receptors and neurological disease: neuroprotection and neurodegeneration. Handbook Exp Pharmacol. 2009;193:535–87. https://doi.org/10.1007/978-3-540-89615-9_17.

    Article  CAS  Google Scholar 

  133. Sabbah HN, Gupta RC, Kohli S, Wang M, Rastogi S, Zhang K, et al. Chronic therapy with a partial adenosine A1-receptor agonist improves left ventricular function and remodeling in dogs with advanced heart failure. Circ Heart Failure. 2013;6(3):563–71. https://doi.org/10.1161/circheartfailure.112.000208.

    Article  CAS  PubMed  Google Scholar 

  134. Shah SJ, Voors AA, McMurray JJV, Kitzman DW, Viethen T, Bomfim Wirtz A, et al. Effect of neladenoson bialanate on exercise capacity among patients with heart failure with preserved ejection fraction: a randomized clinical trial. JAMA. 2019;321(21):2101–12. https://doi.org/10.1001/jama.2019.6717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Birk AV, Chao WM, Bracken C, Warren JD, Szeto HH. Targeting mitochondrial cardiolipin and the cytochrome c/cardiolipin complex to promote electron transport and optimize mitochondrial ATP synthesis. Br J Pharmacol. 2014;171(8):2017–28. https://doi.org/10.1111/bph.12468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Dai W, Shi J, Gupta RC, Sabbah HN, Hale SL, Kloner RA. Bendavia, a mitochondria-targeting peptide, improves postinfarction cardiac function, prevents adverse left ventricular remodeling, and restores mitochondria-related gene expression in rats. J Cardiovasc Pharmacol. 2014;64(6):543–53. https://doi.org/10.1097/fjc.0000000000000155.

    Article  CAS  PubMed  Google Scholar 

  137. Daubert MA, Yow E, Dunn G, Marchev S, Barnhart H, Douglas PS, et al. Novel mitochondria-targeting peptide in heart failure treatment: a randomized, placebo-controlled trial of elamipretide. Circ Heart Failure. 2017;10(12) https://doi.org/10.1161/circheartfailure.117.004389.

  138. Butler J, Khan MS, Anker SD, Fonarow GC, Kim RJ, Nodari S, et al. Effects of elamipretide on left ventricular function in patients with heart failure with reduced ejection fraction: the PROGRESS-HF phase 2 trial. J Card Fail. 2020;26(5):429–37. https://doi.org/10.1016/j.cardfail.2020.02.001.

    Article  PubMed  Google Scholar 

  139. Wu J, Zeng Z, Zhang W, Deng Z, Wan Y, Zhang Y, et al. Emerging role of SIRT3 in mitochondrial dysfunction and cardiovascular diseases. Free Radic Res. 2019;53(2):139–49. https://doi.org/10.1080/10715762.2018.1549732.

    Article  CAS  PubMed  Google Scholar 

  140. Chen J, Chen S, Zhang B, Liu J. SIRT3 as a potential therapeutic target for heart failure. Pharmacol Res. 2021;165:105432. https://doi.org/10.1016/j.phrs.2021.105432.

    Article  CAS  PubMed  Google Scholar 

  141. Koentges C, Pfeil K, Schnick T, Wiese S, Dahlbock R, Cimolai MC, et al. SIRT3 deficiency impairs mitochondrial and contractile function in the heart. Basic Res Cardiol. 2015;110(4):36. https://doi.org/10.1007/s00395-015-0493-6.

    Article  CAS  PubMed  Google Scholar 

  142. Pillai VB, Samant S, Sundaresan NR, Raghuraman H, Kim G, Bonner MY, et al. Honokiol blocks and reverses cardiac hypertrophy in mice by activating mitochondrial Sirt3. Nat Commun. 2015;6:6656. https://doi.org/10.1038/ncomms7656.

    Article  ADS  CAS  PubMed  Google Scholar 

  143. Chen T, Li J, Liu J, Li N, Wang S, Liu H, et al. Activation of SIRT3 by resveratrol ameliorates cardiac fibrosis and improves cardiac function via the TGF-β/Smad3 pathway. Am J Physiol Heart Circ Physiol. 2015;308(5):H424–34. https://doi.org/10.1152/ajpheart.00454.2014.

    Article  CAS  PubMed  Google Scholar 

  144. Breton M, Costemale-Lacoste JF, Li Z, Lafuente-Lafuente C, Belmin J, Mericskay M. Blood NAD levels are reduced in very old patients hospitalized for heart failure. Exp Gerontol. 2020;139:111051. https://doi.org/10.1016/j.exger.2020.111051.

    Article  CAS  PubMed  Google Scholar 

  145. Diguet N, Trammell SAJ, Tannous C, Deloux R, Piquereau J, Mougenot N, et al. Nicotinamide riboside preserves cardiac function in a mouse model of dilated cardiomyopathy. Circulation. 2018;137(21):2256–73. https://doi.org/10.1161/circulationaha.116.026099.

    Article  CAS  PubMed  Google Scholar 

  146. Zhou B, Wang DD, Qiu Y, Airhart S, Liu Y, Stempien-Otero A, et al. Boosting NAD level suppresses inflammatory activation of PBMCs in heart failure. J Clin Invest. 2020;130(11):6054–63. https://doi.org/10.1172/jci138538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Saini R. Coenzyme Q10: The essential nutrient. J Pharm Bioallied Sci. 2011;3(3):466–7. https://doi.org/10.4103/0975-7406.84471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. McMurray JJ, Dunselman P, Wedel H, Cleland JG, Lindberg M, Hjalmarson A, et al. Coenzyme Q10, rosuvastatin, and clinical outcomes in heart failure: a pre-specified substudy of CORONA (controlled rosuvastatin multinational study in heart failure). J Am Coll Cardiol. 2010;56(15):1196–204. https://doi.org/10.1016/j.jacc.2010.02.075.

    Article  CAS  PubMed  Google Scholar 

  149. Samuel TY, Hasin T, Gotsman I, Weitzman T, Ben Ivgi F, Dadon Z, et al. Coenzyme Q10 in the treatment of heart failure with preserved ejection fraction: a prospective, randomized, double-blind, placebo-controlled trial. Drugs R D. 2022;22(1):25–33. https://doi.org/10.1007/s40268-021-00372-1.

    Article  CAS  PubMed  Google Scholar 

  150. Al Saadi T, Assaf Y, Farwati M, Turkmani K, Al-Mouakeh A, Shebli B, et al. Coenzyme Q10 for heart failure. Cochrane Database Syst Rev. 2021;2(2):Cd008684. https://doi.org/10.1002/14651858.CD008684.pub3.

    Article  PubMed  Google Scholar 

  151. Alarcón-Vieco E, Martínez-García I, Sequí-Domínguez I, Rodríguez-Gutiérrez E, Moreno-Herráiz N, Pascual-Morena C. Effect of coenzyme Q10 on cardiac function and survival in heart failure: an overview of systematic reviews and meta-analyses. Food Funct. 2023;14(14):6302–11. https://doi.org/10.1039/d3fo01255g.

    Article  CAS  PubMed  Google Scholar 

  152. Lei L, Liu Y. Efficacy of coenzyme Q10 in patients with cardiac failure: a meta-analysis of clinical trials. BMC Cardiovasc Disord. 2017;17(1):196. https://doi.org/10.1186/s12872-017-0628-9.

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  153. Omran H, Illien S, MacCarter D, St. Cyr J, Lüderitz B. D‐Ribose improves diastolic function and quality of life in congestive heart failure patients: a prospective feasibility study. Eur J Heart Failure. 2003;5(5):615–9. https://doi.org/10.1016/s1388-9842(03)00060-6.

    Article  CAS  Google Scholar 

  154. Takahara S, Soni S, Maayah ZH, Ferdaoussi M, Dyck JRB. Ketone therapy for heart failure: current evidence for clinical use. Cardiovasc Res. 2021; https://doi.org/10.1093/cvr/cvab068.

  155. Akram M. A focused review of the role of ketone bodies in health and disease. J Med Food. 2013;16(11):965–7. https://doi.org/10.1089/jmf.2012.2592.

    Article  CAS  PubMed  Google Scholar 

  156. Guo Y, Zhang C, Shang FF, Luo M, You Y, Zhai Q, et al. Ketogenic diet ameliorates cardiac dysfunction via balancing mitochondrial dynamics and inhibiting apoptosis in type 2 diabetic mice. Aging Dis. 2020;11(2):229–40. https://doi.org/10.14336/ad.2019.0510.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Batch JT, Lamsal SP, Adkins M, Sultan S, Ramirez MN. Advantages and disadvantages of the ketogenic diet: a review article. Cureus. 2020;12(8):e9639. https://doi.org/10.7759/cureus.9639.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Tao J, Chen H, Wang YJ, Qiu JX, Meng QQ, Zou RJ, et al. Ketogenic diet suppressed T-regulatory cells and promoted cardiac fibrosis via reducing mitochondria-associated membranes and inhibiting mitochondrial function. Oxid Med Cellul Longevity. 2021;2021:5512322. https://doi.org/10.1155/2021/5512322.

    Article  CAS  Google Scholar 

  159. Gibson AA, Seimon RV, Lee CM, Ayre J, Franklin J, Markovic TP, et al. Do ketogenic diets really suppress appetite? A systematic review and meta-analysis. Obes Rev. 2015;16(1):64–76. https://doi.org/10.1111/obr.12230.

    Article  CAS  PubMed  Google Scholar 

  160. Cox PJ, Kirk T, Ashmore T, Willerton K, Evans R, Smith A, et al. Nutritional ketosis alters fuel preference and thereby endurance performance in athletes. Cell Metabol. 2016;24(2):256–68. https://doi.org/10.1016/j.cmet.2016.07.010.

    Article  CAS  Google Scholar 

  161. Yurista SR, Matsuura TR, Silljé HHW, Nijholt KT, McDaid KS, Shewale SV, et al. Ketone ester treatment improves cardiac function and reduces pathologic remodeling in preclinical models of heart failure. Circ Heart Failure. 2021;14(1):e007684. https://doi.org/10.1161/circheartfailure.120.007684.

    Article  CAS  PubMed  Google Scholar 

  162. Deng Y, Xie M, Li Q, Xu X, Ou W, Zhang Y, et al. Targeting mitochondria-inflammation circuit by β-hydroxybutyrate mitigates HFpEF. Circ Res. 2021;128(2):232–45. https://doi.org/10.1161/circresaha.120.317933.

    Article  CAS  PubMed  Google Scholar 

  163. Kemi OJ, Høydal MA, Haram PM, Garnier A, Fortin D, Ventura-Clapier R, et al. Exercise training restores aerobic capacity and energy transfer systems in heart failure treated with losartan. Cardiovasc Res. 2007;76(1):91–9. https://doi.org/10.1016/j.cardiores.2007.06.008.

    Article  CAS  PubMed  Google Scholar 

  164. Viloria MAD, Li Q, Lu W, Nhu NT, Liu Y, Cui ZY, et al. Effect of exercise training on cardiac mitochondrial respiration, biogenesis, dynamics, and mitophagy in ischemic heart disease. Front Cardiovasc Med. 2022;9:949744. https://doi.org/10.3389/fcvm.2022.949744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Zhou Q, Deng J, Pan X, Meng D, Zhu Y, Bai Y, et al. Gut microbiome mediates the protective effects of exercise after myocardial infarction. Microbiome. 2022;10(1):82. https://doi.org/10.1186/s40168-022-01271-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. O'Connor CM, Whellan DJ, Lee KL, Keteyian SJ, Cooper LS, Ellis SJ, et al. Efficacy and safety of exercise training in patients with chronic heart failure: HF-ACTION randomized controlled trial. JAMA. 2009;301(14):1439–50. https://doi.org/10.1001/jama.2009.454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Varady KA, Cienfuegos S, Ezpeleta M, Gabel K. Cardiometabolic benefits of intermittent fasting. Annu Rev Nutr. 2021;41:333–61. https://doi.org/10.1146/annurev-nutr-052020-041327.

    Article  CAS  PubMed  Google Scholar 

  168. Garza-González S, Nieblas B, Solbes-Gochicoa MM, Altamirano J, García N. Intermittent fasting as possible treatment for heart failure. Curr Vasc Pharmacol. 2022;20(3):260–71. https://doi.org/10.2174/1570161120666220610151915.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Figures were created in Biorender.

Funding

This work was supported by Zhejiang Provincial Natural Science Foundation (LR21H020001 to HM), National Natural Science Foundation of China (82270386 to HM, 82070251 to MX), and Zhejiang Provincial Medical and Health Technology Project (2023RC020 to SY).

Author information

Authors and Affiliations

Authors

Contributions

SM, YY, and SY wrote the manuscript; SM and MS prepared the figures; SY and SZ contributed to the discussion of the content; HM and MX conceived and revised the manuscript. All authors have read and agreed to the final version of the manuscript.

Corresponding authors

Correspondence to Meixiang Xiang or Hong Ma.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Associate Editor Junjie Xiao oversaw the review of this article

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, S., Yu, Y., Yu, S. et al. Advances in Metabolic Remodeling and Intervention Strategies in Heart Failure. J. of Cardiovasc. Trans. Res. 17, 36–55 (2024). https://doi.org/10.1007/s12265-023-10443-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-023-10443-0

Keywords

Navigation