Skip to main content

Advertisement

Log in

Cardiac Metabolism, Reprogramming, and Diseases

  • Review
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Cardiovascular diseases (CVD) account for the largest bulk of deaths worldwide, posing a massive burden on societies and the global healthcare system. Besides, the incidence and prevalence of these diseases are on the rise, demanding imminent action to revert this trend. Cardiovascular pathogenesis harbors a variety of molecular and cellular mechanisms among which dysregulated metabolism is of significant importance and may even proceed other mechanisms. The healthy heart metabolism primarily relies on fatty acids for the ultimate production of energy through oxidative phosphorylation in mitochondria. Other metabolites such as glucose, amino acids, and ketone bodies come next. Under pathological conditions, there is a shift in metabolic pathways and the preference of metabolites, termed metabolic remodeling or reprogramming. In this review, we aim to summarize cardiovascular metabolism and remodeling in different subsets of CVD to come up with a new paradigm for understanding and treatment of these diseases.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ACC2:

Acetyl-CoA carboxylase 2

ACSL1:

Acyl-CoA synthetase long-chain family member 1

ATGL:

Adipose triglyceride lipase

AMP:

Adenosine monophosphate

AMPK:

AMP-activated protein kinase

ATP:

Adenosine triphosphate

BCKD:

Branched-chain a-keto acid dehydrogenase

BDH1:

β-Hydroxybutyrate dehydrogenase 1

CPT1:

Carnitine palmitoyltransferase I

DGAT1:

Diacylglycerol O-acyltransferase 1

EAA:

Excitatory amino acid

eNOS:

Endothelial nitric oxide synthase

FAS:

Fatty acid synthase

GLUT:

Glucose transporter

LATs:

L-type amino acid transporters

LPL:

Lipoprotein lipase

MPC1:

Mitochondrial pyruvate carrier 1

mTORC1:

Mammalian target of rapamycin complex 1

NADH:

Nicotinamide adenine dinucleotide

NADPH:

Nicotinamide adenine dinucleotide phosphate

OXCT1:

3-Oxoacid CoA transferase 1

PFK2:

Phosphofructokinase 2

PFK1:

Phosphofructokinase 1

PNPLA2:

Patatin-like phospholipase domain containing 2

PON1:

Paraoxonase 1

PON2:

Paraoxonase 2

PPARA:

Peroxisome proliferator–activated receptor alpha

PPARD:

Peroxisome proliferator–activated receptor delta

PPARG:

Peroxisome proliferator–activated receptor gamma

PPARGC1A:

PPARG coactivator 1 alpha

PPARGC1B:

PPARG coactivator 1 beta

PPM1K:

Protein phosphatase, Mg2+/Mn2+ dependent 1K

ROS:

Reactive oxygen species

SCOT:

Succinyl-CoA:3-oxoacid CoA transferase

SLC2A1:

Solute carrier family 2 member 1

SLC2A4:

Solute carrier family 2 member 4

SLC16A1:

Solute carrier family 16 member 1

SLC16A7:

Solute carrier family 16 member 7

SLC27A1:

Solute carrier family 27 member 1

TBC1D1:

TBC1 domain family member 1

TBC1D4:

TBC1 domain family member 4

References

  1. Joseph P, et al. Reducing the global burden of cardiovascular disease, part 1: the epidemiology and risk factors. Circ Res. 2017;121:677–94.

    Article  CAS  PubMed  Google Scholar 

  2. Benjamin EJ, et al. Heart disease and stroke statistics—2018 update: a report from the American Heart Association. Circulation. 2018;137:e67–e492.

    Article  PubMed  Google Scholar 

  3. Barquera S, et al. Global overview of the epidemiology of atherosclerotic cardiovascular disease. Arch Med Res. 2015;46:328–38.

    Article  PubMed  Google Scholar 

  4. Diez D, et al. The use of network analyses for elucidating mechanisms in cardiovascular disease. Mol BioSyst. 2010;6:289–304.

    Article  CAS  PubMed  Google Scholar 

  5. Heineke J, Molkentin JD. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol. 2006;7:589–600.

    Article  CAS  PubMed  Google Scholar 

  6. Gibb AA, Hill BG. Metabolic coordination of physiological and pathological cardiac remodeling. Circ Res. 2018;123:107–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wende AR, Brahma MK, McGinnis GR, Young ME. Metabolic origins of heart failure. Basic Trans Sci. 2017;2:297–310.

    Google Scholar 

  8. Ritterhoff J, Tian R. Metabolism in cardiomyopathy: every substrate matters. Cardiovasc Res. 2017;113:411–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Murashige D, et al. Comprehensive quantification of fuel use by the failing and nonfailing human heart. Science. 2020;370:364–8.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fukushima A, et al. Acetylation contributes to hypertrophy-caused maturational delay of cardiac energy metabolism. JCI Insight. 2018;3

  11. Lopaschuk GD, Karwi QG, Tian R, Wende AR, Abel ED. Cardiac energy metabolism in heart failure. Circ Res. 2021;128:1487–513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Karwi QG, Jörg AR, Lopaschuk GD. Allosteric, transcriptional and post-translational control of mitochondrial energy metabolism. Biochem J. 2019;476:1695–712.

    Article  CAS  PubMed  Google Scholar 

  13. Karwi QG, et al. Insulin directly stimulates mitochondrial glucose oxidation in the heart. Cardiovasc Diabetol. 2020;19:1–14.

    Article  Google Scholar 

  14. Karwi QG, Uddin GM, Ho KL, Lopaschuk GD. Loss of metabolic flexibility in the failing heart. Front Cardiovasc Med. 2018;5:68.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ho KL, et al. Ketones can become the major fuel source for the heart but do not increase cardiac efficiency. Cardiovasc Res. 2021;117:1178–87.

    Article  CAS  PubMed  Google Scholar 

  16. Karwi QG, Biswas D, Pulinilkunnil T, Lopaschuk GD. Myocardial ketones metabolism in heart failure. J Card Fail. 2020;26:998–1005.

    Article  PubMed  Google Scholar 

  17. Fillmore N, Wagg CS, Zhang L, Fukushima A, Lopaschuk GD. Cardiac branched-chain amino acid oxidation is reduced during insulin resistance in the heart. Am J Physiol-Endocrinol Metabol. 2018;315:E1046–52.

    Article  CAS  Google Scholar 

  18. Fahy E, et al. A comprehensive classification system for lipids1. J Lipid Res. 2005;46:839–61.

    Article  CAS  PubMed  Google Scholar 

  19. Tracey TJ, Steyn FJ, Wolvetang EJ, Ngo ST. Neuronal lipid metabolism: multiple pathways driving functional outcomes in health and disease. Front Mol Neurosci. 2018;11:10.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Natesan V, Kim S-J. Lipid Metabolism, Disorders and Therapeutic Drugs–Review. Biomol Ther. 2021;29:596.

    Article  CAS  Google Scholar 

  21. Nagy K, Tiuca I-D. Fatty acids. IntechOpen; 2017.

    Google Scholar 

  22. Leśniak W, et al. Cardiovascular risk management in type 2 diabetes of more than 10-year duration: results of Polish ARETAEUS2-Grupa Study. Cardiol J. 2015;22:150–9.

    Article  PubMed  Google Scholar 

  23. Alves-Bezerra M, Cohen DE. Triglyceride metabolism in the liver. Compr Physiol. 2017;8:1.

    PubMed  PubMed Central  Google Scholar 

  24. Uttaro AD. Biosynthesis of polyunsaturated fatty acids in lower eukaryotes. IUBMB Life. 2006;58:563–71.

    Article  CAS  PubMed  Google Scholar 

  25. Rosca MG, et al. Oxidation of fatty acids is the source of increased mitochondrial reactive oxygen species production in kidney cortical tubules in early diabetes. Diabetes. 2012;61:2074–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nelson RH. Hyperlipidemia as a risk factor for cardiovascular disease. Prim Care: Clin Off Pract. 2013;40:195–211.

    Article  Google Scholar 

  27. Mancini GJ, Hegele RA. Leiter, L. A. & Committee, D. C. C. P. G. E. Dyslipidemia. Can J Diabetes. 2018;42:S178–85.

    Article  PubMed  Google Scholar 

  28. Cohain AT, et al. An integrative multiomic network model links lipid metabolism to glucose regulation in coronary artery disease. Nat Commun. 2021;12:547.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Burdon KP, et al. Association of genes of lipid metabolism with measures of subclinical cardiovascular disease in the Diabetes Heart Study. J Med Genet. 2005;42:720–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Goldberg IJ, Trent CM, Schulze PC. Lipid metabolism and toxicity in the heart. Cell Metab. 2012;15:805–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Marfella R, et al. Myocardial lipid accumulation in patients with pressure-overloaded heart and metabolic syndrome [s]. J Lipid Res. 2009;50:2314–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. McGavock JM, et al. Cardiac steatosis in diabetes mellitus: a 1H-magnetic resonance spectroscopy study. Circulation. 2007;116:1170–5.

    Article  PubMed  Google Scholar 

  33. Sharma S, et al. Intramyocardial lipid accumulation in the failing human heart resembles the lipotoxic rat heart. The FASEB J. 2004;18:1692–700.

    Article  CAS  PubMed  Google Scholar 

  34. Labarthe F, Khairallah M, Bouchard B, Stanley WC, Des Rosiers C. Fatty acid oxidation and its impact on response of spontaneously hypertensive rat hearts to an adrenergic stress: benefits of a medium-chain fatty acid. Am J Physiol-Heart Circ Physiol. 2005;288:H1425–36.

    Article  CAS  PubMed  Google Scholar 

  35. Stowe KA, Burgess SC, Merritt M, Sherry AD, Malloy CR. Storage and oxidation of long-chain fatty acids in the C57/BL6 mouse heart as measured by NMR spectroscopy. FEBS Lett. 2006;580:4282–7.

    Article  CAS  PubMed  Google Scholar 

  36. Ballard FB, Danforth WH, Naegle S, Bing RJ. Myocardial metabolism of fatty acids. J Clin Invest. 1960;39:717–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Razani B, et al. Fatty acid synthase modulates homeostatic responses to myocardial stress. J Biol Chem. 2011;286:30949–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Goodwin GW, Taylor CS, Taegtmeyer H. Regulation of energy metabolism of the heart during acute increase in heart work. J Biol Chem. 1998;273:29530–9.

    Article  CAS  PubMed  Google Scholar 

  39. Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC. Myocardial fatty acid metabolism in health and disease. Physiol Rev. 2010;90:207–58.

    Article  CAS  PubMed  Google Scholar 

  40. Perman JC, et al. The VLDL receptor promotes lipotoxicity and increases mortality in mice following an acute myocardial infarction. J Clin Invest. 2011;121:2625–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Koves TR, et al. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab. 2008;7:45–56.

    Article  CAS  PubMed  Google Scholar 

  42. Yagyu H, et al. Lipoprotein lipase (LpL) on the surface of cardiomyocytes increases lipid uptake and produces a cardiomyopathy. J Clin Invest. 2003;111:419–26.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Nöhammer C, et al. Myocardial dysfunction and male mortality in peroxisome proliferator-activated receptor alpha knockout mice overexpressing lipoprotein lipase in muscle. Lab Invest. 2003;83:259–69.

    Article  PubMed  Google Scholar 

  44. Chiu H-C, et al. Transgenic expression of fatty acid transport protein 1 in the heart causes lipotoxic cardiomyopathy. Circ Res. 2005;96:225–33.

    Article  CAS  PubMed  Google Scholar 

  45. Chiu H-C, et al. A novel mouse model of lipotoxic cardiomyopathy. J Clin Invest. 2001;107:813–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Son N-H, et al. Cardiomyocyte expression of PPARγ leads to cardiac dysfunction in mice. J Clin Invest. 2007;117:2791–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Duncan JG, et al. Rescue of cardiomyopathy in peroxisome proliferator-activated receptor-α transgenic mice by deletion of lipoprotein lipase identifies sources of cardiac lipids and peroxisome proliferator-activated receptor-α activators. Circulation. 2010;121:426–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Burkart EM, et al. Nuclear receptors PPARβ/δ and PPARα direct distinct metabolic regulatory programs in the mouse heart. J Clin Invest. 2007;117:3930–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Cerk IK, Wechselberger L, Oberer M. Adipose triglyceride lipase regulation: an overview. Curr Protein and Pept Sci. 2018;19:221–33.

    CAS  Google Scholar 

  50. Haemmerle G, et al. Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science. 2006;312:734–7.

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Haemmerle G, et al. ATGL-mediated fat catabolism regulates cardiac mitochondrial function via PPAR-α and PGC-1. Nat Med. 2011;17:1076–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cao Y, et al. Effects of Long-Chain Fatty Acyl-CoA Synthetase 1 on Diglyceride Synthesis and Arachidonic Acid Metabolism in Sheep Adipocytes. Int J Mol Sci. 21 https://doi.org/10.3390/ijms21062044(2020).

  53. Ellis JM, et al. Mouse cardiac acyl coenzyme a synthetase 1 deficiency impairs fatty acid oxidation and induces cardiac hypertrophy. Mol Cell Biol. 2011;31:1252–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Borradaile NM, et al. Disruption of endoplasmic reticulum structure and integrity in lipotoxic cell death. J Lipid Res. 2006;47:2726–37.

    Article  CAS  PubMed  Google Scholar 

  55. Yan J, et al. Increased glucose uptake and oxidation in mouse hearts prevent high fatty acid oxidation but cause cardiac dysfunction in diet-induced obesity. Circulation. 2009;119:2818–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Son N-H, et al. PPARγ-induced cardiolipotoxicity in mice is ameliorated by PPARα deficiency despite increases in fatty acid oxidation. J Clin Invest. 2010;120:3443–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Okere IC, et al. Low carbohydrate/high-fat diet attenuates cardiac hypertrophy, remodeling, and altered gene expression in hypertension. Hypertension. 2006;48:1116–23.

    Article  CAS  PubMed  Google Scholar 

  58. Chitraju C, Walther TC, Farese RV. The triglyceride synthesis enzymes DGAT1 and DGAT2 have distinct and overlapping functions in adipocytes. J Lipid Res. 2019;60:1112–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Liu L, et al. DGAT1 expression increases heart triglyceride content but ameliorates lipotoxicity. J Biol Chem. 2009;284:36312–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ventura-Clapier R, Garnier A, Veksler V. Energy metabolism in heart failure. J Physiol. 2004;555:1–13.

    Article  CAS  PubMed  Google Scholar 

  61. Tran DH, Wang ZV. Glucose metabolism in cardiac hypertrophy and heart failure. J Am Heart Assoc. 2019;8:e012673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Garcia NA, Moncayo-Arlandi J, Sepulveda P, Diez-Juan A. Cardiomyocyte exosomes regulate glycolytic flux in endothelium by direct transfer of GLUT transporters and glycolytic enzymes. Cardiovasc Res. 2016;109:397–408.

    Article  CAS  PubMed  Google Scholar 

  63. Giugliano D, Ceriello A, Esposito K. Glucose metabolism and hyperglycemia. Am J Clin Nutr. 2008;87:217S–22S.

    Article  CAS  PubMed  Google Scholar 

  64. Rosano G, Fini M, Caminiti G, Barbaro G. Cardiac metabolism in myocardial ischemia. Curr Pharm Design. 2008;14:2551–62.

    Article  CAS  Google Scholar 

  65. Chanda D, Luiken JJ, Glatz JF. Signaling pathways involved in cardiac energy metabolism. FEBS Lett. 2016;590:2364–74.

    Article  CAS  PubMed  Google Scholar 

  66. Nascimben L, et al. Mechanisms for increased glycolysis in the hypertrophied rat heart. Hypertension. 2004;44:662–7.

    Article  CAS  PubMed  Google Scholar 

  67. Wang J, et al. Reduced cardiac fructose 2, 6 bisphosphate increases hypertrophy and decreases glycolysis following aortic constriction. PLoS One. 2013;8:e53951.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Leong H, Brownsey R, Kulpa J, Allard M. Glycolysis and pyruvate oxidation in cardiac hypertrophy—why so unbalanced? Comp Biochem Physiol A: Mol Integr Physiol. 2003;135:499–513.

    Article  CAS  PubMed  Google Scholar 

  69. Donthi RV, et al. Cardiac expression of kinase-deficient 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase inhibits glycolysis, promotes hypertrophy, impairs myocyte function, and reduces insulin sensitivity. J Biol Chem. 2004;279:48085–90.

    Article  CAS  PubMed  Google Scholar 

  70. Salt IP, Hardie DG. AMP-activated protein kinase: an ubiquitous signaling pathway with key roles in the cardiovascular system. Circ Res. 2017;120:1825–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Webster I, Friedrich SO, Lochner A, Huisamen B. AMP kinase activation and glut4 translocation in isolated cardiomyocytes. Cardiovasc J Afr. 2010;21:72–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Lee CT, Ussher JR, Mohammad A, Lam A, Lopaschuk GD. 5’-AMP-activated protein kinase increases glucose uptake independent of GLUT4 translocation in cardiac myocytes. Can J Physiol Pharmacol. 2014;92:307–14.

    Article  CAS  PubMed  Google Scholar 

  73. Cartee GD. Roles of TBC1D1 and TBC1D4 in insulin- and exercise-stimulated glucose transport of skeletal muscle. Diabetologia. 2015;58:19–30. https://doi.org/10.1007/s00125-014-3395-5.

    Article  CAS  PubMed  Google Scholar 

  74. Habegger KM, Hoffman NJ, Ridenour CM, Brozinick JT, Elmendorf JS. AMPK enhances insulin-stimulated GLUT4 regulation via lowering membrane cholesterol. Endocrinology. 2012;153:2130–41. https://doi.org/10.1210/en.2011-2099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sakamoto K, Holman GD. Emerging role for AS160/TBC1D4 and TBC1D1 in the regulation of GLUT4 traffic. Am J Physiol-Endocrinol Metab. 2008;295:E29–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hopkins TA, Dyck JR, Lopaschuk GD. AMP-activated protein kinase regulation of fatty acid oxidation in the ischaemic heart. Bioch Soc Trans. 2003;31:207–12. https://doi.org/10.1042/bst0310207.

    Article  CAS  Google Scholar 

  77. Kantor PF, Robertson MA, Coe JY, Lopaschuk GD. Volume overload hypertrophy of the newborn heart slows the maturation of enzymes involved in the regulation of fatty acid metabolism. J Am College Cardiol. 1999;33:1724–34.

    Article  CAS  Google Scholar 

  78. Mori J, et al. Agonist-induced hypertrophy and diastolic dysfunction are associated with selective reduction in glucose oxidation: a metabolic contribution to heart failure with normal ejection fraction. Circ: Heart Fail. 2012;5:493–503.

    CAS  PubMed  Google Scholar 

  79. Jenkins CM, Yang J, Sims HF, Gross RW. Reversible high affinity inhibition of phosphofructokinase-1 by acyl-CoA: a mechanism integrating glycolytic flux with lipid metabolism. J Biol Chem. 2011;286:11937–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Izawa Y, et al. ERK1/2 activation by angiotensin II inhibits insulin-induced glucose uptake in vascular smooth muscle cells. Exp Cell Res. 2005;308:291–9.

    Article  CAS  PubMed  Google Scholar 

  81. Zhang L, et al. Cardiac insulin-resistance and decreased mitochondrial energy production precede the development of systolic heart failure after pressure-overload hypertrophy. Circ: Heart Fail. 2013;6:1039–48.

    CAS  PubMed  Google Scholar 

  82. Wang X, et al. Metabolic characterization of myocardial infarction using GC-MS-based tissue metabolomics. Int Heart J. 2017;58:441–6.

    Article  ADS  CAS  PubMed  Google Scholar 

  83. Liu Q, Docherty JC, Rendell JC, Clanachan AS, Lopaschuk GD. High levels of fatty acids delay the recoveryof intracellular pH and cardiac efficiency inpost-ischemic hearts by inhibiting glucose oxidation. J Am College Cardiol. 2002;39:718–25.

    Article  CAS  Google Scholar 

  84. Gao Q, et al. Glycolysis and fatty acid β-oxidation, which one is the culprit of ischemic reperfusion injury. Int J Clin Exp Med. 2018;11:59–68.

    Google Scholar 

  85. Jaswal JS, Keung W, Wang W, Ussher JR, Lopaschuk GD. Targeting fatty acid and carbohydrate oxidation—a novel therapeutic intervention in the ischemic and failing heart. Biochim Biophys Acta (BBA)-Mol Cell Res. 2011;1813:1333–50.

    Article  CAS  Google Scholar 

  86. Nissler K, Petermann H, Wenz I, Brox D. Fructose 2, 6-bisphosphate metabolism in Ehrlich ascites tumour cells. J Cancer Res Clin Oncol. 1995;121:739–45.

    Article  CAS  PubMed  Google Scholar 

  87. Opie LH. Myocardial ischemia—metabolic pathways and implications of increased glycolysis. Cardiovasc Drugs Ther. 1990;4:777–90.

    Article  PubMed  Google Scholar 

  88. Chaudhry R, Varacallo M. Biochemistry, glycolysis. StatPearls Publishing; 2018.

    Google Scholar 

  89. Buja LM. Myocardial ischemia and reperfusion injury. Cardiovasc Pathol. 2005;14:170–5.

    Article  CAS  PubMed  Google Scholar 

  90. Fillmore N, Mori J, Lopaschuk G. Mitochondrial fatty acid oxidation alterations in heart failure, ischaemic heart disease and diabetic cardiomyopathy. Br J Pharmacol. 2014;171:2080–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Beltran C, et al. Enhancing glycolysis protects against ischemia-reperfusion injury by reducing ROS production. Metabolites. 2020;10:132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Paolisso G, et al. Total-body and myocardial substrate oxidation in congestive heart failure. Metabolism. 1994;43:174–9.

    Article  CAS  PubMed  Google Scholar 

  93. Lommi J, Kupari M, Yki-Järvinen H. Free fatty acid kinetics and oxidation in congestive heart failure. Am J Cardiol. 1998;81:45–50.

    Article  CAS  PubMed  Google Scholar 

  94. Lionetti V, Stanley WC, Recchia FA. Modulating fatty acid oxidation in heart failure. Cardiovasc Res. 2011;90:202–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Fillmore N, et al. Uncoupling of glycolysis from glucose oxidation accompanies the development of heart failure with preserved ejection fraction. Mol Med. 2018;24:1–12.

    Article  CAS  Google Scholar 

  96. Diakos NA, et al. Evidence of glycolysis up-regulation and pyruvate mitochondrial oxidation mismatch during mechanical unloading of the failing human heart: implications for cardiac reloading and conditioning. JACC: Basic Trans Sci. 2016;1:432–44.

    Google Scholar 

  97. Huang Y, Zhou M, Sun H, Wang Y. Branched-chain amino acid metabolism in heart disease: an epiphenomenon or a real culprit? Cardiovasc Res. 2011;90:220–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Karwi QG, Lopaschuk GD. Branched-chain amino acid metabolism in the failing heart. Cardiovasc Drugs Ther. 2022:1–8.

  99. Kandasamy P, Gyimesi G, Kanai Y, Hediger MA. Amino acid transporters revisited: new views in health and disease. Trends Biochem Sci. 2018;43:752–89.

    Article  CAS  PubMed  Google Scholar 

  100. Carpentier AC. Branched-chain amino acid catabolism by brown adipose tissue. Endocrinology. 2020;161:bqaa060.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Zhang B, et al. Leucine supplementation in a chronically protein-restricted diet enhances muscle weight and postprandial protein synthesis of skeletal muscle by promoting the mTOR pathway in adult rats. Engineering. 2017;3:760–5.

    Article  CAS  Google Scholar 

  102. Romano S, et al. Cardiomyopathies in propionic aciduria are reversible after liver transplantation. J Pediatr. 2010;156:128–34.

    Article  PubMed  Google Scholar 

  103. De Bie I, Nizard SDP, Mitchell GA. Fetal dilated cardiomyopathy: an unsuspected presentation of methylmalonic aciduria and hyperhomocystinuria, cblC type. Prenat diagn. 2009;29:266–70.

    Article  PubMed  Google Scholar 

  104. Harris RA, Joshi M, Jeoung NH. Mechanisms responsible for regulation of branched-chain amino acid catabolism. Biochem Biophys Res Commun. 2004;313:391–6.

    Article  CAS  PubMed  Google Scholar 

  105. Lu G, et al. Protein phosphatase 2Cm is a critical regulator of branched-chain amino acid catabolism in mice and cultured cells. J Clin Invest. 2009;119:1678–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Manoli I, Venditti C. Disorders of branched chain amino acid metabolism. Trans Sci Rare Dis. 2016;1:91–110.

    CAS  Google Scholar 

  107. Lu G, et al. A novel mitochondrial matrix serine/threonine protein phosphatase regulates the mitochondria permeability transition pore and is essential for cellular survival and development. Genes Dev. 2007;21:784–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Katta A, et al. Impaired overload-induced hypertrophy is associated with diminished mTOR signaling in insulin-resistant skeletal muscle of the obese Zucker rat. Am J Physiol-Regul Integr Comp Physiol. 2010;299:R1666–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Li Y, et al. AMPK inhibits cardiac hypertrophy by promoting autophagy via mTORC1. Arch Biochem Biophys. 2014;558:79–86.

    Article  CAS  PubMed  Google Scholar 

  110. D'Antona G, et al. Branched-chain amino acid supplementation promotes survival and supports cardiac and skeletal muscle mitochondrial biogenesis in middle-aged mice. Cell Metab. 2010;12:362–72.

    Article  CAS  PubMed  Google Scholar 

  111. de Keyzer Y, et al. Multiple OXPHOS deficiency in the liver, kidney, heart, and skeletal muscle of patients with methylmalonic aciduria and propionic aciduria. Pediatr Res. 2009;66:91–5.

    Article  PubMed  Google Scholar 

  112. Selvaraj S, Kelly DP, Margulies KB. Implications of altered ketone metabolism and therapeutic ketosis in heart failure. Circulation. 2020;141:1800–12.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Laffel L. Ketone bodies: a review of physiology, pathophysiology and application of monitoring to diabetes. Diabetes/Metab Res Rev. 1999;15:412–26.

    Article  CAS  PubMed  Google Scholar 

  114. Puchalska P, Crawford PA. Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics. Cell Metab. 2017;25:262–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. van Hasselt PM, et al. Monocarboxylate transporter 1 deficiency and ketone utilization. New Engl J Med. 2014;371:1900–7.

    Article  PubMed  Google Scholar 

  116. Robinson AM, Williamson DH. Physiological roles of ketone bodies as substrates and signals in mammalian tissues. Physiol Rev. 1980;60:143–87.

    Article  CAS  PubMed  Google Scholar 

  117. Kadir AA, Clarke K, Evans RD. Cardiac ketone body metabolism. Biochim Biophys Acta (BBA)-Mol Basis Dis. 2020;1866:165739.

    Article  Google Scholar 

  118. Russell R, Taegtmeyer H. Changes in citric acid cycle flux and anaplerosis antedate the functional decline in isolated rat hearts utilizing acetoacetate. J Clin Invest. 1991;87:384–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Russell R 3rd, Taegtmeyer H. Pyruvate carboxylation prevents the decline in contractile function of rat hearts oxidizing acetoacetate. Am J Physiol-Heart Circ Physiol. 1991;261:H1756–62.

    Article  CAS  Google Scholar 

  120. Takahara S, Soni S, Maayah ZH, Ferdaoussi M, Dyck JR. Ketone therapy for heart failure: current evidence for clinical use. Cardiovasc Res. 2022;118:977–87.

    Article  CAS  PubMed  Google Scholar 

  121. Schugar RC, et al. Cardiomyocyte-specific deficiency of ketone body metabolism promotes accelerated pathological remodeling. Mol Metab. 2014;3:754–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Aubert G, et al. The failing heart relies on ketone bodies as a fuel. Circulation. 2016;133:698–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Horton JL, et al. The failing heart utilizes 3-hydroxybutyrate as a metabolic stress defense. JCI Insight. 2019;4

  124. De Jong KA, Lopaschuk GD. Complex energy metabolic changes in heart failure with preserved ejection fraction and heart failure with reduced ejection fraction. Can J Cardiol. 2017;33:860–71.

    Article  PubMed  Google Scholar 

  125. Keon CA, et al. Substrate dependence of the mitochondrial energy status in the isolated working rat heart. Biochem Soc Trans. 1995;307S.

  126. Bassenge E, et al. Effect of ketone bodies on cardiac metabolism. Am J Physiol-Legacy Content. 1965;208:162–8.

    Article  CAS  Google Scholar 

  127. Stanley WC, Meadows SR, Kivilo KM, Roth BA, Lopaschuk GD. β-Hydroxybutyrate inhibits myocardial fatty acid oxidation in vivo independent of changes in malonyl-CoA content. Am J Physiol-Heart Circ Physiol. 2003

  128. Bedi KC Jr, et al. Evidence for intramyocardial disruption of lipid metabolism and increased myocardial ketone utilization in advanced human heart failure. Circulation. 2016;133:706–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Uchihashi M, et al. Cardiac-specific Bdh1 overexpression ameliorates oxidative stress and cardiac remodeling in pressure overload–induced heart failure. Circ: Heart Fail. 2017;10:e004417.

    CAS  PubMed  Google Scholar 

  130. Lopaschuk GD, Wall SR, Olley PM, Davies NJ. Etomoxir, a carnitine palmitoyltransferase I inhibitor, protects hearts from fatty acid-induced ischemic injury independent of changes in long chain acylcarnitine. Circ Res. 1988;63:1036–43.

    Article  CAS  PubMed  Google Scholar 

  131. Turcani M, Rupp H. Etomoxir improves left ventricular performance of pressure-overloaded rat heart. Circulation. 1997;96:3681–6.

    Article  CAS  PubMed  Google Scholar 

  132. Rupp H, Vetter R. Sarcoplasmic reticulum function and carnitine palmitoyltransferase-1 inhibition during progression of heart failure. Br J Pharmacol. 2000;131:1748–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Schmidt-Schweda S, Holubarsch C. First clinical trial with etomoxir in patients with chronic congestive heart failure. Clin Sci. 2000;99:27–35.

    Article  CAS  Google Scholar 

  134. Lee L, et al. Metabolic modulation with perhexiline in chronic heart failure: a randomized, controlled trial of short-term use of a novel treatment. Circulation. 2005;112:3280–8.

    Article  CAS  PubMed  Google Scholar 

  135. Fragasso G, et al. Effects of metabolic modulation by trimetazidine on left ventricular function and phosphocreatine/adenosine triphosphate ratio in patients with heart failure. Eur Heart J. 2006;27:942–8.

    Article  CAS  PubMed  Google Scholar 

  136. Tuunanen H, et al. Trimetazidine, a metabolic modulator, has cardiac and extracardiac benefits in idiopathic dilated cardiomyopathy. Circulation. 2008;118:1250–8.

    Article  CAS  PubMed  Google Scholar 

  137. Malmberg K, et al. Effects of insulin treatment on cause-specific one-year mortality and morbidity in diabetic patients with acute myocardial infarction. Eur Heart J. 1996;17:1337–44.

    Article  CAS  PubMed  Google Scholar 

  138. Díaz R, et al. Metabolic modulation of acute myocardial infarction. The ECLA (Estudios Cardiológicos Latinoamérica) Collaborative Group. Circulation. 1998;98:2227–34.

    PubMed  Google Scholar 

  139. Jonassen AK, Aasum E, Riemersma RA, Mjøs OD, Larsen TS. Glucose-insulin-potassium reduces infarct size when administered during reperfusion. Cardiovasc. Drugs Ther. 2000;14:615–23.

    Article  CAS  PubMed  Google Scholar 

  140. van der Horst IC, et al. Glucose-insulin-potassium infusion inpatients treated with primary angioplasty for acute myocardial infarction: the glucose-insulin-potassium study: a randomized trial. J Am College Cardiol. 2003;42:784–91.

    Article  Google Scholar 

  141. Ceremużyński L, et al. Low-dose glucose-insulin-potassium is ineffective in acute myocardial infarction: results of a randomized multicenter Pol-GIK trial. Cardiovasc Drugs Ther. 1999;13:191–200.

    Article  PubMed  Google Scholar 

  142. van der Horst IC, et al. Glucose-insulin-potassium and reperfusion in acute myocardial infarction: rationale and design of the Glucose-Insulin-Potassium Study-2 (GIPS-2). Am Heart J. 2005;149:585–91.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (82070398, 81922008), Key Basic Research Projects of Basic Strengthening Plan (2022-JCJQ-ZD-095-00), and the Top Young Talents Special Support Program in Shaanxi Province (2020).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuan Zhang or Dongdong Sun.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Associate Editor Yihua Bei oversaw the review of this article

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Shen, M., Shu, X. et al. Cardiac Metabolism, Reprogramming, and Diseases. J. of Cardiovasc. Trans. Res. 17, 71–84 (2024). https://doi.org/10.1007/s12265-023-10432-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-023-10432-3

Keywords

Navigation