Skip to main content

Advertisement

Log in

Functions, Mechanisms, and therapeutic applications of the inositol pyrophosphates 5PP-InsP5 and InsP8 in mammalian cells

  • Review
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Water-soluble myo-inositol phosphates have long been characterized as second messengers. The signaling properties of these compounds are determined by the number and arrangement of phosphate groups on the myo-inositol backbone. Recently, higher inositol phosphates with pyrophosphate groups were recognized as signaling molecules. 5-Diphosphoinositol 1,2,3,4,6-pentakisphosphate (5PP-InsP5) is the most abundant isoform, constituting more than 90% of intracellular inositol pyrophosphates. 5PP-InsP5 can be further phosphorylated to 1,5-bisdiphosphoinositol 2,3,4,6-tetrakisphosphate (InsP8). These two molecules, 5PP-InsP5 and InsP8, are present in various subcellular compartments, where they participate in regulating diverse cellular processes such as cell death, energy homeostasis, and cytoskeletal dynamics. The synthesis and metabolism of inositol pyrophosphates are subjected to tight regulation, allowing for their highly specific functions. Blocking the 5PP-InsP5/InsP8 signaling pathway by inhibiting the biosynthesis of 5PP-InsP5 demonstrates therapeutic benefits in preclinical studies, and thus holds promise as a therapeutic approach for certain diseases treatment, such as metabolic disorders.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lee B, Park SJ, Hong S, Kim K, Kim S. Inositol Polyphosphate Multikinase Signaling: Multifaceted Functions in Health and Disease. Mol Cells. 2021;44:187–94. https://doi.org/10.14348/molcells.2021.0045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Eckmann L, et al. D-myo-Inositol 1,4,5,6-tetrakisphosphate produced in human intestinal epithelial cells in response to Salmonella invasion inhibits phosphoinositide 3-kinase signaling pathways. Proc Natl Acad Sci U S A. 1997;94:14456–60. https://doi.org/10.1073/pnas.94.26.14456.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fu C, et al. Inositol Polyphosphate Multikinase Inhibits Angiogenesis via Inositol Pentakisphosphate-Induced HIF-1alpha Degradation. Circ Res. 2018;122:457–72. https://doi.org/10.1161/CIRCRESAHA.117.311983.

    Article  CAS  PubMed  Google Scholar 

  4. Frederick JP, et al. An essential role for an inositol polyphosphate multikinase, Ipk2, is in mouse embryogenesis and second messenger production. Proc Natl Acad Sci U S A. 2005;102:8454–9. https://doi.org/10.1073/pnas.0503706102.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Seeds AM, Tsui MM, Sunu C, Spana EP, York JD. Inositol phosphate kinase 2 is required for imaginal disc development in Drosophila. Proc Natl Acad Sci U S A. 2015;112:15660–5. https://doi.org/10.1073/pnas.1514684112.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Marolt G, Kolar M. Analytical Methods for Determination of Phytic Acid and Other Inositol Phosphates: A Review. Molecules. 2020; 26. https://doi.org/10.3390/molecules26010174

  7. Verbsky J, Lavine K, Majerus PW. Disruption of the mouse inositol 1,3,4,5,6-pentakisphosphate 2-kinase gene, associated lethality, and tissue distribution of 2-kinase expression. Proc Natl Acad Sci U S A. 2005;102:8448–53. https://doi.org/10.1073/pnas.0503656102.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stephens L, et al. The detection, purification, structural characterization, and metabolism of diphosphoinositol pentakisphosphate(s) and bisdiphosphoinositol tetrakisphosphate(s). J Biol Chem. 1993;268:4009–15.

    Article  CAS  PubMed  Google Scholar 

  9. Glennon MC, Shears SB. Turnover of inositol pentakisphosphates, inositol hexakisphosphate and diphosphoinositol polyphosphates in primary cultured hepatocytes. Biochem J. 1993;293(Pt 2):583–90. https://doi.org/10.1042/bj2930583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Menniti FS, Miller RN, Putney JW Jr, Shears SB. Turnover of inositol polyphosphate pyrophosphates in pancreatoma cells. J Biol Chem. 1993;268:3850–6.

    Article  CAS  PubMed  Google Scholar 

  11. Gu C, et al. KO of 5-InsP(7) kinase activity transforms the HCT116 colon cancer cell line into a hypermetabolic, growth-inhibited phenotype. Proc Natl Acad Sci U S A. 2017;114:11968–73. https://doi.org/10.1073/pnas.1702370114.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chin AC et al. The inositol pyrophosphate 5-InsP(7) drives sodium-potassium pump degradation by relieving an autoinhibitory domain of PI3K p85alpha. Sci Adv. 2020; 6. https://doi.org/10.1126/sciadv.abb8542

  13. Furkert D, Hostachy S, Nadler-Holly M, Fiedler D. Triplexed Affinity Reagents to Sample the Mammalian Inositol Pyrophosphate Interactome. Cell Chem Biol. 2020;27:1097-1108 e1094. https://doi.org/10.1016/j.chembiol.2020.07.017.

    Article  CAS  PubMed  Google Scholar 

  14. Gu C, Wilson MS, Jessen HJ, Saiardi A, Shears SB. Inositol Pyrophosphate Profiling of Two HCT116 Cell Lines Uncovers Variation in InsP8 Levels. PLoS One. 2016;11:e0165286. https://doi.org/10.1371/journal.pone.0165286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lee YS, Huang K, Quiocho FA, O’Shea EK. Molecular basis of cyclin-CDK-CKI regulation by reversible binding of an inositol pyrophosphate. Nat Chem Biol. 2008;4:25–32. https://doi.org/10.1038/nchembio.2007.52.

    Article  CAS  PubMed  Google Scholar 

  16. Pulloor NK, et al. Human genome-wide RNAi screen identifies an essential role for inositol pyrophosphates in Type-I interferon response. PLoS Pathog. 2014;10:e1003981. https://doi.org/10.1371/journal.ppat.1003981.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lee YS, Mulugu S, York JD, O’Shea EK. Regulation of a cyclin-CDK-CDK inhibitor complex by inositol pyrophosphates. Science. 2007;316:109–12. https://doi.org/10.1126/science.1139080.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Saiardi A, Resnick AC, Snowman AM, Wendland B, Snyder SH. Inositol pyrophosphates regulate cell death and telomere length through phosphoinositide 3-kinase-related protein kinases. Proc Natl Acad Sci U S A. 2005;102:1911–4. https://doi.org/10.1073/pnas.0409322102.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. York SJ, Armbruster BN, Greenwell P, Petes TD, York JD. Inositol diphosphate signaling regulates telomere length. J Biol Chem. 2005;280:4264–9. https://doi.org/10.1074/jbc.M412070200.

    Article  CAS  PubMed  Google Scholar 

  20. Kobayashi A, Abe SI, Watanabe M, Moritoh Y. Liquid chromatography-mass spectrometry measurements of blood diphosphoinositol pentakisphosphate levels. J Chromatogr A. 2022;1681:463450. https://doi.org/10.1016/j.chroma.2022.463450.

    Article  CAS  PubMed  Google Scholar 

  21. Harmel RK, et al. Harnessing (13)C-labeled myo-inositol to interrogate inositol phosphate messengers by NMR. Chem Sci. 2019;10:5267–74. https://doi.org/10.1039/c9sc00151d.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Qiu D, et al. Analysis of inositol phosphate metabolism by capillary electrophoresis electrospray ionization mass spectrometry. Nat Commun. 2020;11:6035. https://doi.org/10.1038/s41467-020-19928-x.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lin H, et al. Structural analysis and detection of biological inositol pyrophosphates reveal that the family of VIP/diphosphoinositol pentakisphosphate kinases are 1/3-kinases. J Biol Chem. 2009;284:1863–72. https://doi.org/10.1074/jbc.M805686200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Riemer E, et al. ITPK1 is an InsP(6)/ADP phosphotransferase that controls phosphate signaling in Arabidopsis. Mol Plant. 2021;14:1864–80. https://doi.org/10.1016/j.molp.2021.07.011.

    Article  CAS  PubMed  Google Scholar 

  25. Qiu D, et al. Capillary electrophoresis mass spectrometry identifies new isomers of inositol pyrophosphates in mammalian tissues. Chem Sci. 2023;14:658–67. https://doi.org/10.1039/d2sc05147h.

    Article  CAS  PubMed  Google Scholar 

  26. Nguyen Trung M, Furkert D, Fiedler D. Versatile signaling mechanisms of inositol pyrophosphates. Curr Opin Chem Biol. 2022;70:102177. https://doi.org/10.1016/j.cbpa.2022.102177.

    Article  CAS  PubMed  Google Scholar 

  27. Cridland C, Gillaspy G. Inositol Pyrophosphate Pathways and Mechanisms: What Can We Learn from Plants? Molecules. 2020; 25. https://doi.org/10.3390/molecules25122789

  28. Padmanabhan U, Dollins DE, Fridy PC, York JD, Downes CP. Characterization of a selective inhibitor of inositol hexakisphosphate kinases: use in defining biological roles and metabolic relationships of inositol pyrophosphates. J Biol Chem. 2009;284:10571–82. https://doi.org/10.1074/jbc.M900752200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sun D, et al. Oncostatin M (OSM) protects against cardiac ischaemia/reperfusion injury in diabetic mice by regulating apoptosis, mitochondrial biogenesis and insulin sensitivity. J Cell Mol Med. 2015;19:1296–307. https://doi.org/10.1111/jcmm.12501.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ghoshal S, et al. TNP [N2-(m-Trifluorobenzyl), N6-(p-nitrobenzyl)purine] ameliorates diet induced obesity and insulin resistance via inhibition of the IP6K1 pathway. Mol Metab. 2016;5:903–17. https://doi.org/10.1016/j.molmet.2016.08.008.

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  31. Moritoh Y, et al. The enzymatic activity of inositol hexakisphosphate kinase controls circulating phosphate in mammals. Nat Commun. 2021;12:4847. https://doi.org/10.1038/s41467-021-24934-8.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mukherjee S et al. The IP6K Inhibitor LI-2242 Ameliorates Diet-Induced Obesity, Hyperglycemia, and Hepatic Steatosis in Mice by Improving Cell Metabolism and Insulin Signaling. Biomolecules. 2023;13. https://doi.org/10.3390/biom13050868

  33. Fu C, et al. Neuronal migration is mediated by inositol hexakisphosphate kinase 1 via alpha-actinin and focal adhesion kinase. Proc Natl Acad Sci U S A. 2017;114:2036–41. https://doi.org/10.1073/pnas.1700165114.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fu C, et al. Multiple aspects of male germ cell development and interactions with Sertoli cells require inositol hexakisphosphate kinase-1. Sci Rep. 2018;8:7039. https://doi.org/10.1038/s41598-018-25468-8.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Malla AB, Bhandari R. IP6K1 is essential for chromatoid body formation and temporal regulation of Tnp2 and Prm2 expression in mouse spermatids. J Cell Sci. 2017;130:2854–66. https://doi.org/10.1242/jcs.204966.

    Article  CAS  PubMed  Google Scholar 

  36. Nagpal L, Fu C, Snyder SH. Inositol Hexakisphosphate Kinase-2 in Cerebellar Granule Cells Regulates Purkinje Cells and Motor Coordination via Protein 4.1N. J Neurosci. 2018;38:7409–19. https://doi.org/10.1523/JNEUROSCI.1165-18.2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Morrison BH, et al. Gene deletion of inositol hexakisphosphate kinase 2 predisposes to aerodigestive tract carcinoma. Oncogene. 2009;28:2383–92. https://doi.org/10.1038/onc.2009.113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fu C, et al. Inositol Hexakisphosphate Kinase-3 Regulates the Morphology and Synapse Formation of Cerebellar Purkinje Cells via Spectrin/Adducin. J Neurosci. 2015;35:11056–67. https://doi.org/10.1523/JNEUROSCI.1069-15.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rojas T, et al. Inositol hexakisphosphate kinase 3 promotes focal adhesion turnover via interactions with dynein intermediate chain 2. Proc Natl Acad Sci U S A. 2019;116:3278–87. https://doi.org/10.1073/pnas.1817001116.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chakraborty A. The inositol pyrophosphate pathway in health and diseases. Biol Rev Camb Philos Soc. 2018;93:1203–27. https://doi.org/10.1111/brv.12392.

    Article  PubMed  Google Scholar 

  41. Chakraborty A, et al. Inositol pyrophosphates inhibit Akt signaling, thereby regulating insulin sensitivity and weight gain. Cell. 2010;143:897–910. https://doi.org/10.1016/j.cell.2010.11.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rao F, et al. Inositol pyrophosphates promote tumor growth and metastasis by antagonizing liver kinase B1. Proc Natl Acad Sci U S A. 2015;112:1773–8. https://doi.org/10.1073/pnas.1424642112.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wu M, Chong LS, Perlman DH, Resnick AC, Fiedler D. Inositol polyphosphates intersect with signaling and metabolic networks via two distinct mechanisms. Proc Natl Acad Sci U S A. 2016;113:E6757–65. https://doi.org/10.1073/pnas.1606853113.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lolla P, Shah A, Unnikannan CP, Oddi V, Bhandari R. Inositol pyrophosphates promote MYC polyubiquitination by FBW7 to regulate cell survival. Biochem J. 2021;478:1647–61. https://doi.org/10.1042/BCJ20210081.

    Article  CAS  PubMed  Google Scholar 

  45. Chanduri M, et al. Inositol hexakisphosphate kinase 1 (IP6K1) activity is required for cytoplasmic dynein-driven transport. Biochem J. 2016;473:3031–47. https://doi.org/10.1042/BCJ20160610.

    Article  CAS  PubMed  Google Scholar 

  46. Qi J, et al. Itraconazole inhibits endothelial cell migration by disrupting inositol pyrophosphate-dependent focal adhesion dynamics and cytoskeletal remodeling. Biomed Pharmacother. 2023;161:114449. https://doi.org/10.1016/j.biopha.2023.114449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yang S, et al. Metabolic enzyme UAP1 mediates IRF3 pyrophosphorylation to facilitate innate immune response. Mol Cell. 2023;83:298-313 e298. https://doi.org/10.1016/j.molcel.2022.12.007.

    Article  CAS  PubMed  Google Scholar 

  48. Harmel R, Fiedler D. Features and regulation of non-enzymatic post-translational modifications. Nat Chem Biol. 2018;14:244–52. https://doi.org/10.1038/nchembio.2575.

    Article  CAS  PubMed  Google Scholar 

  49. Pavlovic I, et al. Cellular delivery and photochemical release of a caged inositol-pyrophosphate induces PH-domain translocation in cellulo. Nat Commun. 2016;7:10622. https://doi.org/10.1038/ncomms10622.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wu M, Dul BE, Trevisan AJ, Fiedler D. Synthesis and characterization of non-hydrolysable diphosphoinositol polyphosphate second messengers. Chem Sci. 2013;4:405–10. https://doi.org/10.1039/C2SC21553E.

    Article  CAS  PubMed  Google Scholar 

  51. Park SJ, et al. Inositol Pyrophosphate Metabolism Regulates Presynaptic Vesicle Cycling at Central Synapses. iScience. 2020;23:101000. https://doi.org/10.1016/j.isci.2020.101000.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lee TS, et al. Inositol pyrophosphates inhibit synaptotagmin-dependent exocytosis. Proc Natl Acad Sci U S A. 2016;113:8314–9. https://doi.org/10.1073/pnas.1521600113.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li H, Datunashvili M, Reyes RC, Voglmaier SM. Inositol hexakisphosphate kinases differentially regulate trafficking of vesicular glutamate transporters 1 and 2. Front Cell Neurosci. 2022;16:926794. https://doi.org/10.3389/fncel.2022.926794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Illies C, et al. Requirement of inositol pyrophosphates for full exocytotic capacity in pancreatic beta cells. Science. 2007;318:1299–302. https://doi.org/10.1126/science.1146824.

    Article  ADS  CAS  PubMed  Google Scholar 

  55. Bhandari R, Juluri KR, Resnick AC, Snyder SH. Gene deletion of inositol hexakisphosphate kinase 1 reveals inositol pyrophosphate regulation of insulin secretion, growth, and spermiogenesis. Proc Natl Acad Sci U S A. 2008;105:2349–53. https://doi.org/10.1073/pnas.0712227105.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  56. Rajasekaran SS, et al. Inositol hexakisphosphate kinase 1 is a metabolic sensor in pancreatic beta-cells. Cell Signal. 2018;46:120–8. https://doi.org/10.1016/j.cellsig.2018.03.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang X, et al. 5-IP7 is a GPCR messenger mediating neural control of synaptotagmin-dependent insulin exocytosis and glucose homeostasis. Nat Metab. 2021;3:1400–14. https://doi.org/10.1038/s42255-021-00468-7.

    Article  CAS  PubMed  Google Scholar 

  58. Hauke S, et al. Photolysis of cell-permeant caged inositol pyrophosphates controls oscillations of cytosolic calcium in a beta-cell line. Chem Sci. 2019;10:2687–92. https://doi.org/10.1039/c8sc03479f.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Azevedo C, Burton A, Ruiz-Mateos E, Marsh M, Saiardi A. Inositol pyrophosphate mediated pyrophosphorylation of AP3B1 regulates HIV-1 Gag release. Proc Natl Acad Sci U S A. 2009;106:21161–6. https://doi.org/10.1073/pnas.0909176106.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  60. Wilson MS, Jessen HJ, Saiardi A. The inositol hexakisphosphate kinases IP6K1 and -2 regulate human cellular phosphate homeostasis, including XPR1-mediated phosphate export. J Biol Chem. 2019;294:11597–608. https://doi.org/10.1074/jbc.RA119.007848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wild R, et al. Control of eukaryotic phosphate homeostasis by inositol polyphosphate sensor domains. Science. 2016;352:986–90. https://doi.org/10.1126/science.aad9858.

    Article  ADS  CAS  PubMed  Google Scholar 

  62. Jadav RS, et al. Deletion of inositol hexakisphosphate kinase 1 (IP6K1) reduces cell migration and invasion, conferring protection from aerodigestive tract carcinoma in mice. Cell Signal. 2016;28:1124–36. https://doi.org/10.1016/j.cellsig.2016.04.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Szijgyarto Z, Garedew A, Azevedo C, Saiardi A. Influence of inositol pyrophosphates on cellular energy dynamics. Science. 2011;334:802–5. https://doi.org/10.1126/science.1211908.

    Article  ADS  CAS  PubMed  Google Scholar 

  64. Mukherjee S, et al. Pleiotropic actions of IP6K1 mediate hepatic metabolic dysfunction to promote nonalcoholic fatty liver disease and steatohepatitis. Mol Metab. 2021;54:101364. https://doi.org/10.1016/j.molmet.2021.101364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhu Q, et al. Adipocyte-specific deletion of Ip6k1 reduces diet-induced obesity by enhancing AMPK-mediated thermogenesis. J Clin Invest. 2016;126:4273–88. https://doi.org/10.1172/JCI85510.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Zhu Q, Ghoshal S, Tyagi R, Chakraborty A. Global IP6K1 deletion enhances temperature modulated energy expenditure which reduces carbohydrate and fat induced weight gain. Mol Metab. 2017;6:73–85. https://doi.org/10.1016/j.molmet.2016.11.010.

    Article  CAS  PubMed  Google Scholar 

  67. Nagpal L, Kornberg MD, Albacarys LK, Snyder SH. Inositol hexakisphosphate kinase-2 determines cellular energy dynamics by regulating creatine kinase-B. Proc Natl Acad Sci U S A. 2021; 118. https://doi.org/10.1073/pnas.2020695118.

  68. Nagpal L, Kornberg MD, Snyder SH. Inositol hexakisphosphate kinase-2 non-catalytically regulates mitophagy by attenuating PINK1 signaling. Proc Natl Acad Sci U S A. 2022;119:e2121946119. https://doi.org/10.1073/pnas.2121946119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sahu S, et al. InsP(7) is a small-molecule regulator of NUDT3-mediated mRNA decapping and processing-body dynamics. Proc Natl Acad Sci U S A. 2020;117:19245–53. https://doi.org/10.1073/pnas.1922284117.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  70. Shah A, Bhandari R. IP6K1 upregulates the formation of processing bodies by influencing protein-protein interactions on the mRNA cap. J Cell Sci. 2020;134. https://doi.org/10.1242/jcs.259117

  71. Hostachy S, et al. Dissecting the activation of insulin degrading enzyme by inositol pyrophosphates and their bisphosphonate analogs. Chem Sci. 2021;12:10696–702. https://doi.org/10.1039/d1sc02975d.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Koldobskiy MA, et al. p53-mediated apoptosis requires inositol hexakisphosphate kinase-2. Proc Natl Acad Sci U S A. 2010;107:20947–51. https://doi.org/10.1073/pnas.1015671107.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  73. Rao F, et al. Inositol pyrophosphates mediate the DNA-PK/ATM-p53 cell death pathway by regulating CK2 phosphorylation of Tti1/Tel2. Mol Cell. 2014;54:119–32. https://doi.org/10.1016/j.molcel.2014.02.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Xu Y, et al. Cigarette smoke (CS) and nicotine delay neutrophil spontaneous death via suppressing production of diphosphoinositol pentakisphosphate. Proc Natl Acad Sci U S A. 2013;110:7726–31. https://doi.org/10.1073/pnas.1302906110.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  75. Deng J, et al. Inositol pyrophosphates mediated the apoptosis induced by hypoxic injury in bone marrow-derived mesenchymal stem cells by autophagy. Stem Cell Res Ther. 2019;10:159. https://doi.org/10.1186/s13287-019-1256-3.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Jadav RS, Chanduri MV, Sengupta S, Bhandari R. Inositol pyrophosphate synthesis by inositol hexakisphosphate kinase 1 is required for homologous recombination repair. J Biol Chem. 2013;288:3312–21. https://doi.org/10.1074/jbc.M112.396556.

    Article  CAS  PubMed  Google Scholar 

  77. Rao F, et al. Inositol hexakisphosphate kinase-1 mediates assembly/disassembly of the CRL4-signalosome complex to regulate DNA repair and cell death. Proc Natl Acad Sci U S A. 2014;111:16005–10. https://doi.org/10.1073/pnas.1417900111.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lazcano P, Schmidtke MW, Onu CJ, Greenberg ML. Phosphatidic acid inhibits inositol synthesis by inducing nuclear translocation of kinase IP6K1 and repression of myo-inositol-3-P synthase. J Biol Chem. 2022;298:102363. https://doi.org/10.1016/j.jbc.2022.102363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Burton A, Azevedo C, Andreassi C, Riccio A, Saiardi A. Inositol pyrophosphates regulate JMJD2C-dependent histone demethylation. Proc Natl Acad Sci U S A. 2013;110:18970–5. https://doi.org/10.1073/pnas.1309699110.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ito M, et al. Inositol pyrophosphate profiling reveals regulatory roles of IP6K2-dependent enhanced IP(7) metabolism in the enteric nervous system. J Biol Chem. 2023;299:102928. https://doi.org/10.1016/j.jbc.2023.102928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hori Y, Engel C, Kobayashi T. Regulation of ribosomal RNA gene copy number, transcription and nucleolus organization in eukaryotes. Nat Rev Mol Cell Biol. 2023. https://doi.org/10.1038/s41580-022-00573-9.

    Article  PubMed  Google Scholar 

  82. Sahu S et al. Nucleolar Architecture Is Modulated by a Small Molecule, the Inositol Pyrophosphate 5-InsP(7). Biomolecules. 2023;13. https://doi.org/10.3390/biom13010153

  83. Li X, et al. Control of XPR1-dependent cellular phosphate efflux by InsP(8) is an exemplar for functionally-exclusive inositol pyrophosphate signaling. Proc Natl Acad Sci U S A. 2020;117:3568–74. https://doi.org/10.1073/pnas.1908830117.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bittner T, et al. Photolysis of Caged Inositol Pyrophosphate InsP(8) Directly Modulates Intracellular Ca(2+) Oscillations and Controls C2AB Domain Localization. J Am Chem Soc. 2020;142:10606–11. https://doi.org/10.1021/jacs.0c01697.

    Article  CAS  PubMed  Google Scholar 

  85. Gokhale NA, Zaremba A, Janoshazi AK, Weaver JD, Shears SB. PPIP5K1 modulates ligand competition between diphosphoinositol polyphosphates and PtdIns(3,4,5)P3 for polyphosphoinositide-binding domains. Biochem J. 2013;453:413–26. https://doi.org/10.1042/BJ20121528.

    Article  CAS  PubMed  Google Scholar 

  86. Wang Z, et al. Rapid stimulation of cellular Pi uptake by the inositol pyrophosphate InsP(8) induced by its photothermal release from lipid nanocarriers using a near infra-red light-emitting diode. Chem Sci. 2020;11:10265–78. https://doi.org/10.1039/d0sc02144j.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Shears SB. Intimate connections: Inositol pyrophosphates at the interface of metabolic regulation and cell signaling. J Cell Physiol. 2018;233:1897–912. https://doi.org/10.1002/jcp.26017.

    Article  CAS  PubMed  Google Scholar 

  88. Wundenberg T, Mayr GW. Synthesis and biological actions of diphosphoinositol phosphates (inositol pyrophosphates), regulators of cell homeostasis. Biol Chem. 2012;393:979–98. https://doi.org/10.1515/hsz-2012-0133.

    Article  CAS  PubMed  Google Scholar 

  89. Gu C. et al. Metabolic supervision by PPIP5K, an inositol pyrophosphate kinase/phosphatase, controls proliferation of the HCT116 tumor cell line. Proc Natl Acad Sci U S A. 2021;118. https://doi.org/10.1073/pnas.2020187118

  90. Zhang Z, et al. Inositol pyrophosphates mediate the effects of aging on bone marrow mesenchymal stem cells by inhibiting Akt signaling. Stem Cell Res Ther. 2014;5:33. https://doi.org/10.1186/scrt431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gu C, et al. The Significance of the Bifunctional Kinase/Phosphatase Activities of Diphosphoinositol Pentakisphosphate Kinases (PPIP5Ks) for Coupling Inositol Pyrophosphate Cell Signaling to Cellular Phosphate Homeostasis. J Biol Chem. 2017;292:4544–55. https://doi.org/10.1074/jbc.M116.765743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Choi JH, Williams J, Cho J, Falck JR, Shears SB. Purification, sequencing, and molecular identification of a mammalian PP-InsP5 kinase that is activated when cells are exposed to hyperosmotic stress. J Biol Chem. 2007;282:30763–75. https://doi.org/10.1074/jbc.M704655200.

    Article  CAS  PubMed  Google Scholar 

  93. Nair VS et al. Inositol Pyrophosphate Synthesis by Diphosphoinositol Pentakisphosphate Kinase-1 is Regulated by Phosphatidylinositol(4,5)bisphosphate. Biosci Rep. 2018;38 https://doi.org/10.1042/BSR20171549

  94. Ghoshal S, Tyagi R, Zhu Q, Chakraborty A. Inositol hexakisphosphate kinase-1 interacts with perilipin1 to modulate lipolysis. Int J Biochem Cell Biol. 2016;78:149–55. https://doi.org/10.1016/j.biocel.2016.06.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Dato S, et al. IP6K3 and IPMK variations in LOAD and longevity: Evidence for a multifaceted signaling network at the crossroad between neurodegeneration and survival. Mech Ageing Dev. 2021;195:111439. https://doi.org/10.1016/j.mad.2021.111439.

    Article  CAS  PubMed  Google Scholar 

  96. Crocco P, et al. Contribution of polymorphic variation of inositol hexakisphosphate kinase 3 (IP6K3) gene promoter to the susceptibility to late onset Alzheimer’s disease. Biochim Biophys Acta. 1862;1766–1773:2016. https://doi.org/10.1016/j.bbadis.2016.06.014.

    Article  CAS  Google Scholar 

  97. Moritoh Y, et al. Inositol Hexakisphosphate Kinase 3 Regulates Metabolism and Lifespan in Mice. Sci Rep. 2016;6:32072. https://doi.org/10.1038/srep32072.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ghoshal S et al. Whole Body Ip6k1 Deletion Protects Mice from Age-Induced Weight Gain, Insulin Resistance and Metabolic Dysfunction. Int J Mol Sci. 2022;23. https://doi.org/10.3390/ijms23042059

  99. Barclay RD, et al. Ingestion of lean meat elevates muscle inositol hexakisphosphate kinase 1 protein content independent of a distinct post-prandial circulating proteome in young adults with obesity. Metabolism. 2020;102:153996. https://doi.org/10.1016/j.metabol.2019.153996.

    Article  CAS  PubMed  Google Scholar 

  100. Naufahu J, et al. High-Intensity Exercise Decreases IP6K1 Muscle Content and Improves Insulin Sensitivity (SI2*) in Glucose-Intolerant Individuals. J Clin Endocrinol Metab. 2018;103:1479–90. https://doi.org/10.1210/jc.2017-02019.

    Article  PubMed  Google Scholar 

  101. Luo HR, et al. GRAB: a physiologic guanine nucleotide exchange factor for Rab3A, which interacts with inositol hexakisphosphate kinase. Neuron. 2001;31:439–51. https://doi.org/10.1016/s0896-6273(01)00384-1.

    Article  CAS  PubMed  Google Scholar 

  102. Kim MG, et al. Inositol hexakisphosphate kinase-1 is a key mediator of prepulse inhibition and short-term fear memory. Mol Brain. 2020;13:72. https://doi.org/10.1186/s13041-020-00615-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Chakraborty A, Latapy C, Xu J, Snyder SH, Beaulieu JM. Inositol hexakisphosphate kinase-1 regulates behavioral responses via GSK3 signaling pathways. Mol Psychiatry. 2014;19:284–93. https://doi.org/10.1038/mp.2013.21.

    Article  CAS  PubMed  Google Scholar 

  104. Li K, et al. Panoramic transcriptome analysis and functional screening of long noncoding RNAs in mouse spermatogenesis. Genome Res. 2021;31:13–26. https://doi.org/10.1101/gr.264333.120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Murat F, et al. The molecular evolution of spermatogenesis across mammals. Nature. 2023;613:308–16. https://doi.org/10.1038/s41586-022-05547-7.

    Article  ADS  CAS  PubMed  Google Scholar 

  106. Boregowda SV, et al. IP6K1 Reduces Mesenchymal Stem/Stromal Cell Fitness and Potentiates High Fat Diet-Induced Skeletal Involution. Stem Cells. 2017;35:1973–83. https://doi.org/10.1002/stem.2645.

    Article  CAS  PubMed  Google Scholar 

  107. Hou Q et al. Inhibition of IP6K1 suppresses neutrophil-mediated pulmonary damage in bacterial pneumonia. Sci Transl Med. 2018;10. https://doi.org/10.1126/scitranslmed.aal4045

  108. Prasad A, et al. Inositol hexakisphosphate kinase 1 regulates neutrophil function in innate immunity by inhibiting phosphatidylinositol-(3,4,5)-trisphosphate signaling. Nat Immunol. 2011;12:752–60. https://doi.org/10.1038/ni.2052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ghosh S, et al. Inositol hexakisphosphate kinase 1 maintains hemostasis in mice by regulating platelet polyphosphate levels. Blood. 2013;122:1478–86. https://doi.org/10.1182/blood-2013-01-481549.

    Article  CAS  PubMed  Google Scholar 

  110. Lee H, Park SJ, Hong S, Lim SW, Kim S. Deletion of IP6K1 in mice accelerates tumor growth by dysregulating the tumor-immune microenvironment. Anim Cells Syst (Seoul). 2022;26:19–27. https://doi.org/10.1080/19768354.2022.2029560.

    Article  CAS  PubMed  Google Scholar 

  111. Chakraborty A, et al. Casein kinase-2 mediates cell survival through phosphorylation and degradation of inositol hexakisphosphate kinase-2. Proc Natl Acad Sci U S A. 2011;108:2205–9. https://doi.org/10.1073/pnas.1019381108.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  112. Nagata E, et al. Inositol hexakisphosphate kinase-2, a physiologic mediator of cell death. J Biol Chem. 2005;280:1634–40. https://doi.org/10.1074/jbc.M409416200.

    Article  CAS  PubMed  Google Scholar 

  113. Nagata E, et al. Inositol hexakisphosphate kinase 2 promotes cell death of anterior horn cells in the spinal cord of patients with amyotrophic lateral sclerosis. Mol Biol Rep. 2020;47:6479–85. https://doi.org/10.1007/s11033-020-05688-w.

    Article  CAS  PubMed  Google Scholar 

  114. Nagata E, et al. Inositol Hexakisphosphate Kinase 2 Promotes Cell Death in Cells with Cytoplasmic TDP-43 Aggregation. Mol Neurobiol. 2016;53:5377–83. https://doi.org/10.1007/s12035-015-9470-1.

    Article  CAS  PubMed  Google Scholar 

  115. Nagata E, et al. Inositol hexakisphosphate kinases induce cell death in Huntington disease. J Biol Chem. 2011;286:26680–6. https://doi.org/10.1074/jbc.M111.220749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Sarmah B, Wente SR. Inositol hexakisphosphate kinase-2 acts as an effector of the vertebrate Hedgehog pathway. Proc Natl Acad Sci U S A. 2010;107:19921–6. https://doi.org/10.1073/pnas.1007256107.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  117. Sandstrom J, et al. IP6K2 predicts favorable clinical outcome of primary breast cancer. Mol Clin Oncol. 2021;14:94. https://doi.org/10.3892/mco.2021.2256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhang Y, et al. LINC00467 facilitates the proliferation, migration and invasion of glioma via promoting the expression of inositol hexakisphosphate kinase 2 by binding to miR-339-3p. Bioengineered. 2022;13:3370–82. https://doi.org/10.1080/21655979.2021.2018098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Mahmassani ZS, et al. Absence of MyD88 from Skeletal Muscle Protects Female Mice from Inactivity-Induced Adiposity and Insulin Resistance. Obesity (Silver Spring). 2020;28:772–82. https://doi.org/10.1002/oby.22759.

    Article  CAS  PubMed  Google Scholar 

  120. Shears SB, Baughman BM, Gu C, Nair VS, Wang H. The significance of the 1-kinase/1-phosphatase activities of the PPIP5K family. Adv Biol Regul. 2017;63:98–106. https://doi.org/10.1016/j.jbior.2016.10.003.

    Article  CAS  PubMed  Google Scholar 

  121. Wang H, Falck JR, Hall TM, Shears SB. Structural basis for an inositol pyrophosphate kinase surmounting phosphate crowding. Nat Chem Biol. 2011;8:111–6. https://doi.org/10.1038/nchembio.733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Weaver JD, Wang H, Shears SB. The kinetic properties of a human PPIP5K reveal that its kinase activities are protected against the consequences of a deteriorating cellular bioenergetic environment. Biosci Rep. 2013;33:e00022. https://doi.org/10.1042/BSR20120115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wang H, et al. Asp1 from Schizosaccharomyces pombe binds a [2Fe-2S](2+) cluster which inhibits inositol pyrophosphate 1-phosphatase activity. Biochemistry. 2015;54:6462–74. https://doi.org/10.1021/acs.biochem.5b00532.

    Article  CAS  PubMed  Google Scholar 

  124. Gokhale NA, Zaremba A, Shears SB. Receptor-dependent compartmentalization of PPIP5K1, a kinase with a cryptic polyphosphoinositide binding domain. Biochem J. 2011;434:415–26. https://doi.org/10.1042/BJ20101437.

    Article  CAS  PubMed  Google Scholar 

  125. Machkalyan G, Trieu P, Petrin D, Hebert TE, Miller GJ. PPIP5K1 interacts with the exocyst complex through a C-terminal intrinsically disordered domain and regulates cell motility. Cell Signal. 2016;28:401–11. https://doi.org/10.1016/j.cellsig.2016.02.002.

    Article  CAS  PubMed  Google Scholar 

  126. Machkalyan G, Hebert TE, Miller GJ. PPIP5K1 Suppresses Etoposide-triggered Apoptosis. J Mol Signal. 2016;11:4. https://doi.org/10.5334/1750-2187-11-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Cao CH, et al. PPIP5K2 promotes colorectal carcinoma pathogenesis through facilitating DNA homologous recombination repair. Oncogene. 2021;40:6680–91. https://doi.org/10.1038/s41388-021-02052-5.

    Article  CAS  PubMed  Google Scholar 

  128. Du C, et al. Renal Klotho and inorganic phosphate are extrinsic factors that antagonistically regulate hematopoietic stem cell maintenance. Cell Rep. 2022;38:110392. https://doi.org/10.1016/j.celrep.2022.110392.

    Article  CAS  PubMed  Google Scholar 

  129. Kaur S, Mirza AH, Overgaard AJ, Pociot F, Storling J. A Dual Systems Genetics Approach Identifies Common Genes, Networks, and Pathways for Type 1 and 2 Diabetes in Human Islets. Front Genet. 2021;12:630109. https://doi.org/10.3389/fgene.2021.630109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Khaled ML, et al. PPIP5K2 and PCSK1 are Candidate Genetic Contributors to Familial Keratoconus. Sci Rep. 2019;9:19406. https://doi.org/10.1038/s41598-019-55866-5.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  131. Yousaf, R. et al. Mutations in Diphosphoinositol-Pentakisphosphate Kinase PPIP5K2 are associated with hearing loss in human and mouse. PLoS Genet. 14; e1007297. https://doi.org/10.1371/journal.pgen.1007297 (2018).

  132. Wormald MM, Ernst G, Wei H, Barrow JC. Synthesis and characterization of novel isoform-selective IP6K1 inhibitors. Bioorg Med Chem Lett. 2019;29:126628. https://doi.org/10.1016/j.bmcl.2019.126628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Gu C, et al. Inhibition of Inositol Polyphosphate Kinases by Quercetin and Related Flavonoids: A Structure-Activity Analysis. J Med Chem. 2019;62:1443–54. https://doi.org/10.1021/acs.jmedchem.8b01593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Liao G, et al. Identification of Small-Molecule Inhibitors of Human Inositol Hexakisphosphate Kinases by High-Throughput Screening. ACS Pharmacol Transl Sci. 2021;4:780–9. https://doi.org/10.1021/acsptsci.0c00218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Boregowda SV et al. Pharmacological Inhibition of Inositol Hexakisphosphate Kinase 1 Protects Mice against Obesity-Induced Bone Loss. Biology (Basel). 2022;11. https://doi.org/10.3390/biology11091257

  136. Zhang Z, et al. Selective inhibition of inositol hexakisphosphate kinases (IP6Ks) enhances mesenchymal stem cell engraftment and improves therapeutic efficacy for myocardial infarction. Basic Res Cardiol. 2014;109:417. https://doi.org/10.1007/s00395-014-0417-x.

    Article  CAS  PubMed  Google Scholar 

  137. Zhang J, et al. Leveraging Methylation Alterations to Discover Potential Causal Genes Associated With the Survival Risk of Cervical Cancer in TCGA Through a Two-Stage Inference Approach. Front Genet. 2021;12:667877. https://doi.org/10.3389/fgene.2021.667877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Li Y, et al. Suppressing MDSC Infiltration in Tumor Microenvironment Serves as an Option for Treating Ovarian Cancer Metastasis. Int J Biol Sci. 2022;18:3697–713. https://doi.org/10.7150/ijbs.70013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Zhou Y, et al. Development of Novel IP6K Inhibitors for the Treatment of Obesity and Obesity-Induced Metabolic Dysfunctions. J Med Chem. 2022;65:6869–87. https://doi.org/10.1021/acs.jmedchem.2c00220.

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  140. Puhl-Rubio AC, et al. Use of Protein Kinase-Focused Compound Libraries for the Discovery of New Inositol Phosphate Kinase Inhibitors. SLAS Discov. 2018;23:982–8. https://doi.org/10.1177/2472555218775323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ahn M, et al. Synthesis and biological evaluation of flavonoid-based IP6K2 inhibitors. J Enzyme Inhib Med Chem. 2023;38:2193866. https://doi.org/10.1080/14756366.2023.2193866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (82220108021, 82070259) and the Natural Science Foundation of Shanghai (22ZR1440700). We thank the thoughtful input from Dr. Dorothea Fiedler. We also thank Alfred C. Chin for editing this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

A.F.C. and C.F. conceptualized. C.F. wrote the manuscript. J.Q. drew the diagrams and completed the tables. J.Q., L.S., L.Z., Y.C., H.Z., and W.C. revised and edited the manuscript.

Corresponding authors

Correspondence to Alex F. Chen or Chenglai Fu.

Ethics declarations

Competing interest

The authors declare that they have no conflicts of interest in this work.

Additional information

Associate Editor Yihua Bei oversaw the review of this article.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, J., Shi, L., Zhu, L. et al. Functions, Mechanisms, and therapeutic applications of the inositol pyrophosphates 5PP-InsP5 and InsP8 in mammalian cells. J. of Cardiovasc. Trans. Res. 17, 197–215 (2024). https://doi.org/10.1007/s12265-023-10427-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-023-10427-0

Keywords

Navigation