Skip to main content
Log in

Machine Learning Identification Framework of Hemodynamics of Blood Flow in Patient-Specific Coronary Arteries with Abnormality

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

In this study, we put forth a new deep neural network framework to predict flow behavior in a coronary arterial network with different properties in the presence of any abnormality like stenosis. An artificial neural network (ANN) model is trained using synthetic data so that it can predict the pressure and velocity within the arterial network. The data required to train the neural network were obtained from the CFD analysis of several geometries of arteries with specific features in ABAQUS software. The proposed approach precisely predicts the hemodynamic behavior of the blood flow. The average accuracy of the pressure prediction was 98.7%, and the average velocity magnitude accuracy was 93.2%. Our model can also be used to predict fractional flow reserve (FFR), which is one of the main indices to determine the severity of stenosis, and our model predicts this index successfully based on the artery features.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

CFD:

Computational fluid dynamics

FEM:

Finite element method

MRI:

Magnetic resonance imaging

FVM:

Finite volume method

WSS:

Wall shear stress

GCRF:

Gaussian conditional random field

MLR:

Multiple regression

MLP:

Multilayer perceptron

MSE:

Mean square error

MAE:

Mean absolute error

AI:

Artificial intelligence

ML:

Machine learning

LV:

Left ventricular

LA:

Left atrial

ML:

Machine learning

CAD:

Coronary artery disease

AAA:

Abdominal aortic aneurysm

ANN:

Artificial neural network

LAD:

Left anterior descending

FFR:

Flow fraction reserve

LDL:

Low-density lipoprotein

References

  1. Heldt T, Mukkamala R, Moody GB, Mark RG. CVSim An open-source cardiovascular simulator for teaching and research. Open Pacing Electrophysiol Ther J. 2010;3:45–54.

    PubMed  PubMed Central  Google Scholar 

  2. Ramiar A, Larimi MM, Ranjbar AA. Acta of Bioengineering and Biomechanics, Investigation of blood flow rheology using second-grade viscoelastic model (Phan-Thien–Tanner) within the carotid artery. 2017: https://doi.org/10.5277/ABB-00775-2016-05.

  3. Ferrari G, Kozarski M, Zieliński K, Fresiello L, Di Molfetta A, Górczyńska K, Pałko KJ, Darowski M. A modular computational circulatory model applicable to VAD testing and training. J Artif Organs. 2012;15:32–43.

    Article  PubMed  Google Scholar 

  4. Tokaji M, Ninomiya S, Kurosaki T, Orihashi K, Sueda T. an educational training simulator for advanced perfusion techniques using a high-fidelity virtual patient model Artif. Organs. 2012;36(12):1026–35.

    Article  Google Scholar 

  5. Stefanovska A. Physics of the human cardiovascular system. Contemp Phys. 1999;40(1):31–55.

    Article  Google Scholar 

  6. Ma Y, Choi J, Hourlier-Fargette A, Xue Y, Chung HU, Lee JY, Wang X, Xie Z, Kang D, Wang H, et al. Relation between blood pressure and pulse wave velocity for human arteries. Proc Natl Acad Sci. 2018;115(44):11144–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Reymond P, Merenda F, Perren F, Rufenacht D, Stergiopulos N. Validation of a one-dimensional model of the systemic arterial tree. Amer J Physiol Heart Circ Physiol. 2009;297(1):H208–22.

    Article  CAS  Google Scholar 

  8. Haris M, Singh A, Cai K, Kogan F, McGarvey J, DeBrosse C, Zsido GA, Witschey WR, Koomalsingh K, Pilla JJ, et al. A technique for in vivo mapping of myocardial creatine kinase metabolism. Nature Med. 2014;20(2):209.

    Article  CAS  PubMed  Google Scholar 

  9. Figueroa CA, Vignon-Clementel IE, Jansen KE, Hughes TJ, Taylor CA. A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput Methods Appl Mech Engrg. 2006;19:5685–706.

    Article  Google Scholar 

  10. Kheyfets VO, Rios L, Smith T, et al. Patient-specific computational modeling of blood flow in the pulmonary arterial circulation. Comput Methods Programs Biomed. 2015;120:88–10.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bertoglio C, Barber D, Gaddum N, et al. Identification of artery wall stiffness: in vitro validation and in vivo results of a data assimilation procedure applied to a 3D fluid-structure interaction model. J Biomech. 2014;47:1027–34.

    Article  PubMed  Google Scholar 

  12. Pijls NH, Fearon WF, Tonino PA, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention in patients with multivessel coronary artery disease: 2-year follow-up of the FAME (fractional flow reserve versus angiography for multivessel evaluation) study. J Am Coll Cardiol. 2010;56:177–84.

    Article  PubMed  Google Scholar 

  13. Sonntag SJ, Li W, Becker M, et al. Combined computational and experimental approach to improve the assessment of mitral regurgitation by echocardiography. Ann Biomed Eng. 2014;42:971–85.

    Article  PubMed  Google Scholar 

  14. Balakrishnan B, Tzafriri AR, Seifert P, Groothuis A, Rogers C, Edelman ER. Strut position, blood flow, and drug deposition: implications for single and overlapping drug-eluting stents. Circulation. 2005;111(22):2958–65.

    Article  PubMed  Google Scholar 

  15. Gay M, Zhang L, Liu WK. Stent modeling using immersed finite element method. Comput Methods Appl Mech Eng. 2006;195:4358–70.

    Article  Google Scholar 

  16. Wu W, Qi M, Liu X, Yang D, Wang W. Delivery and release of nitinol stent in carotid artery and their interactions: a finite element analysis. J Biomech. https://doi.org/10.1016/j.jbiomech.2007.02.024.

  17. Chen WX, Poon EKW, Thondapu V, Hutchins N, Barlisb P, Ooi A. Haemodynamic effects of incomplete stent apposition in curved coronary arteries. J Biomech. 2017;63–3:164–73.

    Article  Google Scholar 

  18. Xiaopeng T, Sun A, Xiao L, Pu F, Xiaoyan D, Kang H, Fan Y. Influence of catheter insertion on the hemodynamic environment in coronary arteries. Med Eng Phys. 2016;38–9:946–51.

    Google Scholar 

  19. Numata S, Itatani K, Kawajiri H, Yamazaki S, Kanda K, Yaku H. Computational fluid dynamics simulation of the right subclavian artery cannulation. J Thorac Cardiovasc Surg. 2017;154–2:480–7.

    Article  Google Scholar 

  20. Rigatelli G, Zuin M, Dell’Avvocata F, Vassilev D, Daggubati R, Nguyen T, Van VietThang N, Foinh N. Evaluation of coronary flow conditions in complex coronary artery bifurcations stenting using computational fluid dynamics: impact of final proximal optimization technique on different double-stent techniques. Cardiovasc Revascularization Med. 2017;18(4):233–40.

    Article  Google Scholar 

  21. Hardman D, Doyle BJ, Semple SIK, Richards JMJ, Newby DE, Easson WJ, Hoskins PR. On the prediction of monocyte deposition in abdominal aortic aneurysms using computational fluid dynamics. Proc ImechE Part H: J Eng Med. 2013;227(10):1114–24.

    Google Scholar 

  22. Hardman D, Doyle BJ, Semple SI, et al. On the prediction of monocyte deposition in abdominal aortic aneurysms using computational fluid dynamics. Proc Inst Mech Eng [H]. 2013;227(10):1114–24.

    Article  Google Scholar 

  23. Foster KR, Koprowski R, Skufca JD. Machine learning, medical diagnosis, and biomedical engineering research: commentary. Biomed Eng Online. 2014;13:94.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kourou K, Exarchos TP, Exarchos KP, Karamouzis MV, Fotiadis DI. Machine learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J. 2015;13:8–17.

    Article  CAS  PubMed  Google Scholar 

  25. Albert MV, Kording K, Herrmann M, Jayaraman A. Fall classification by machine learning using mobile phones. PLoS One. 2012;7:e36556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Motwani M, Dey D, Berman DS, Germano G, Achenbach S, Al-Mallah MH, Andreini D, Budoff MJ, Cademartiri F, Callister TQ, Chang HJ, Chinnaiyan K, Chow BJ, Cury RC, Delago A, Gomez M, Gransar H, Hadamitzky M, Hausleiter J, Hindoyan N, Feuchtner G, Kaufmann PA, Kim YJ, Leipsic J, Lin FY, Maffei E, Marques H, Pontone G, Raff G, Rubinshtein R, Shaw LJ, Stehli J, Villines TC, Dunning A, Min JK, Slomka PJ. Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicenter prospective registry analysis. Eur Heart J. 2017;38:500–7.

    PubMed  Google Scholar 

  27. Arsanjani R, Xu Y, Dey D, Vahistha V, Shalev A, Nakanishi R, Hayes S, Fish M, Berman D, Germano G, Slomka PJ. Improved accuracy of myocardial perfusion SPECT for detection of coronary artery disease by machine learning in a large population. J Nucl Cardiol. 2013;20:553–62.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sankarana S, Grady L, Charles A. Taylorc, Impact of geometric uncertainty on hemodynamic simulations using machine learning. Comput Methods Appl Mech Engrg. 2015;297:167–90.

    Article  Google Scholar 

  29. Itu L, Rapaka S, Passerini T, Georgescu B, Schwemmer C, Schoebinger M, Flohr T, Sharma P, Comaniciu D. A machine-learning approach for computation of fractional flow reserve from coronary computed tomography. J Appl Physiol. 2016;121:42–52.

    Article  PubMed  Google Scholar 

  30. Wu TH, Pang GK, Kwong EW. Predicting systolic blood pressure using machine learning,7th International Conference on Information and Automation for Sustainability, Colombo, Sri Lanka, 2014;1–6.

  31. Narang A, Mor-Avi V, Prado A, Volpato V, Prater D, Tamborini G, Fusini L, Pepi M, Goyal N, Addetia K, Gonc¸alves A, Patel AR, Lang RM. Machine learning based automated dynamic quantification of left heart chamber volumes. Eur Heart J–Cardiovasc Imaging. 2018;1–9.

  32. Tesche C, De Cecco CN, Baumann S, Renker M, McLaurin TW, Duguay TM, Bayer RR, Steinberg DH, Grant KL, Canstein C, Schwemmer C, Schoebinger M, Itu LM, Rapaka S, Sharma P, Joseph Schoep U. Coronary CT angiography–derived fractional flow reserve: machine learning algorithm versus, computational fluid dynamics modeling. Radiology. 2018;288:64–72.

    Article  PubMed  Google Scholar 

  33. Coenen A, Kim YH, Kruk M, Tesche C, De Geer J, Kurata A, Lubbers ML, Daemen J, Itu L, Rapaka S, Sharma P, Schwemmer C, Persson A, Schoepf UJ, Kepka C, Hyun Yang D, Nieman K. Diagnostic accuracy of a machine-learning approach to coronary computed tomographic angiography-based fractional flow reserve: result from the MACHINE consortium. Circ Cardiovasc Imaging. 2018;11(6):e007217. https://doi.org/10.1161/CIRCIMAGING.117.007217.

    Article  PubMed  Google Scholar 

  34. Kissas G, Yang Y, Hwuang E, Witschey WR, Detre JA, Perdikaris P. Machine learning in cardiovascular flows modeling: Predicting arterial blood pressure from non-invasive 4D flow MRI data using physics-informed neural networks. Comput Methods Appl Mech Eng. 2018;358:112623.

    Article  Google Scholar 

  35. Cilla M, Martınez J, Pena E, Angel Martınez M. Machine learning techniques as a helpful tool toward determination of plaque vulnerability. IEEE Trans Biomed Eng. 2012;59-4.

  36. Jordanski M, Radovic M, Milosevic Z, Filipovic N, Obradovic Z. Machine learning approach for predicting wall shear distribution for abdominal aortic aneurysm and carotid bifurcation models. IEEE J Biomed Health Inform. 2018;22(2):537–44. https://doi.org/10.1109/JBHI.2016.2639818.

    Article  PubMed  Google Scholar 

  37. Li G, Wang H, Zhang M, Tupin S, Qiao A, Liu Y, Ohta M, Anzai H. Prediction of 3D cardiovascular hemodynamics before and after coronary artery bypass surgery via deep learning. Commun Biol. 2021;4(1):1–12.

    Google Scholar 

  38. Bikia V, Papaioannou TG, Pagoulatou S, Rovas G, Oikonomou E, Siasos G, Tousoulis D, Stergiopulos N. Noninvasive estimation of aortic hemodynamics and cardiac contractility using machine learning. Sci Rep. 2020;10(1):1–17.

    Article  Google Scholar 

  39. Zhou Y, He Y, Wu J, Cui C, Chen M, Sun B. A method of parameter estimation for cardiovascular hemodynamics based on deep learning and its application to personalize a reduced‐order model. Int J Numer Methods Biomed Eng. 2021;e3533.

  40. Yevtushenko P, Goubergrits L, Gundelwein L, Setio A, Heimann T, Ramm H, Lamecker H, Kuehne T, Meyer A, Schafstedde M. Deep learning based centerline-aggregated aortic hemodynamics: an efficient alternative to numerical modelling of hemodynamics. IEEE J Biomed Health Inform. 2021.

  41. Fossan FE, Müller LO, Sturdy J, Bråten AT, Jørgensen A, Wiseth R, Hellevik LR. Machine learning augmented reduced-order models for FFR-prediction. Comput Methods Appl Mech Eng. 2021;384:113892.

    Article  Google Scholar 

  42. Haynes RH. Physical basis of the dependence of blood viscosity on tube radius. Am J Physiol. 1960;198:1193–200.

    Article  CAS  PubMed  Google Scholar 

  43. Nichols W, O’Rourke M, Vlachopoulos C. McDonald’s blood flow in arteries: theoretical, experimental and clinical principles, 6th ed, 2011.

  44. Akins CW, Travis B, Yoganathan AP. Energy loss for evaluating heart valve performance. J Thorac Cardiovasc Surg. 2008;136(4):820–33. https://doi.org/10.1016/j.jtcvs.2007.12.059.

    Article  PubMed  Google Scholar 

  45. Berger M, Berdoff RL, Gallerstein PE, Goldberg E. Evaluation of aortic stenosis by continuous wave Doppler ultrasound. J Am Coll Cardiol. 1984;3(1):150–6. https://doi.org/10.1016/s0735-1097(84)80442-8.

    Article  CAS  PubMed  Google Scholar 

  46. Kim HJ, Vignon-Clementel IE, Coogan JS, Figueroa CA, Jansen KE, Taylor CA. Patient-specific modeling of blood flow and pressure in human coronary arteries. Ann Biomed Eng. 2010;38(10):3195–209.

    Article  CAS  PubMed  Google Scholar 

  47. Malota Z, Glowacki J, Sadowski W, Kostur M. Numerical analysis of the impact of flow rate, heart rate, vessel geometry, and degree of stenosis on coronary hemodynamic indices. BMC Cardiovasc Disord. 2018;18(1):132.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Freidoonimehr N, Chin R, Zander A, Arjomandi M. An experimental model for pressure drop evaluation in a stenosed coronary artery. Phys Fluids. 2020;32:021901.

    Article  CAS  Google Scholar 

  49. Pijls NH, De Bruyne B, Peels K, Van Der Voort PH, Bonnier HJ, Bartunek J, Koolen JJ, Koolen JJ. Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N Engl J Med. 1996;334(26):1703–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by Micro+Nanosystems & Applied Biophysics Laboratory, Department of Mechanical Engineering, Babol Noshirvani University of Technology, Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences and by the department of Cancer Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Miansari.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Editor-in-Chief Enrique Lara-Pezzi oversaw the review of this article

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farajtabar, M., Larimi, M.M., Biglarian, M. et al. Machine Learning Identification Framework of Hemodynamics of Blood Flow in Patient-Specific Coronary Arteries with Abnormality. J. of Cardiovasc. Trans. Res. 16, 722–737 (2023). https://doi.org/10.1007/s12265-022-10339-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-022-10339-5

Keywords

Navigation