Skip to main content
Log in

Effects of Continuous Flow Left Ventricular Assist Device Support on Microvascular Endothelial Function

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

The effects of continuous flow left ventricular assist device (CF-LVAD) support on microvascular endothelial function in New York Heart Association (NYHA) class IV heart failure (HF) patients are currently unknown. Microvascular endothelial function was assessed by beat-to-beat plethysmographic measurement of finger arterial pulse wave signal changes for 5 min following reactive hyperemia. A group of seven NYHA class IV HF patients was evaluated before CF-LVAD placement (HF), and a second group of six NYHA class IV HF patients was evaluated 1–4 months following CF-LVAD placement (CF-LVAD). Additionally, a third group of seven age-matched healthy subjects served as controls (control). There was no significant (P > 0.05) difference among the three groups in age, weight, or height. Systolic blood pressure (BP) was significantly higher in the control group (120 ± 2 mmHg) as compared to that in the HF (97 ± 8 mmHg, P = 0.005) and CF-LVAD (106 ± 4 mmHg, P = 0.003) groups. Diastolic BP was significantly lower in the HF group (57 ± 5 mmHg) as compared to that in the control (71 ± 2 mmHg, P = 0.012) and CF-LVAD (80 ± 7 mmHg, P = 0.008) groups. The reactive hyperemic index (RHI), a measure of endothelial function, was significantly higher in the control group (2.373 ± 0.274) than in both the HF (1.543 ± 0.173, P = 0.013) and CF-LVAD (1.355 ± 0.163, P = 0.004) groups; however, there was no significant (P = 0.223) difference in RHI between the HF and CF-LVAD groups. The results of the present study demonstrate that while 1–4 months of CF-LVAD support do not negatively affect microvascular endothelial function, 1–4 months of CF-LVAD support do not significantly improve vascular function in resistance vessels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bonetti, P. O., Lerman, L. O., & Lerman, A. (2003). Endothelial dysfunction a marker of atherosclerotic risk. Arteriosclerosis, Thrombosis, and Vascular Biology, 23, 168–175.

    Article  PubMed  CAS  Google Scholar 

  2. Bank, A. J., Lee, P. C., & Kubo, S. H. (2000). Endothelial dysfunction in patients with heart failure: relationship to disease severity. Journal of Cardiac Failure, 6, 29–36.

    Article  PubMed  CAS  Google Scholar 

  3. Kubo, S. H., Rector, T. S., Bank, A. J., et al. (1991). Endothelium-dependent vasodilation is attenuated in patients with heart failure. Circulation, 84, 1589–1596.

    PubMed  CAS  Google Scholar 

  4. Katz, S. D., Biasucci, L., Sabba, C., et al. (1992). Impaired endothelium-mediated vasodilation in the peripheral vasculature of patients with congestive heart failure. Journal of the American College of Cardiology, 19, 918–925.

    Article  PubMed  CAS  Google Scholar 

  5. Drexler, H., Hayoz, D., Münzer, T., et al. (1992). Endothelial function in chronic congestive heart failure. The American Journal of Cardiology, 69, 1596–1601.

    Article  PubMed  CAS  Google Scholar 

  6. Teerlink, J. R., Clozel, M., Fischli, W., et al. (1993). Temporal evolution of endothelial dysfunction in a rat model of chronic heart failure. Journal of the American College of Cardiology, 22, 615–620.

    Article  PubMed  CAS  Google Scholar 

  7. Shechter, M., Matetzky, S., Arad, M., et al. (2009). Vascular endothelial function predicts mortality risk in patients with advanced ischaemic chronic heart failure. European Journal of Heart Failure, 11, 588–593.

    Article  PubMed  Google Scholar 

  8. Katz, S. D., Hryniewicz, K., Hriljac, I., et al. (2005). Vascular endothelial dysfunction and mortality risk in patients with chronic heart failure. Circulation, 111, 310–314.

    Article  PubMed  Google Scholar 

  9. Radovancevic, B., Vrtovec, B., de Kort, E., et al. (2007). End-organ function in patients on long-term circulatory support with continuous- or pulsatile-flow assist devices. The Journal of Heart and Lung Transplantation, 26, 815–818.

    Article  PubMed  Google Scholar 

  10. Nguyen, T., Pham, L., Vinh, P., et al. (2007). Heart failure. In T. Nguyen, D. Hu, M. Kim, & C. Grines (Eds.), Management of complex cardiovascular problems: the evidence-based medicine approach (3rd ed., p. 198). Malden: Blackwell Futura.

    Chapter  Google Scholar 

  11. Papaioannou, T. G., Mathioulakis, D. S., & Tsangaris, S. G. (2003). Simulation of systolic and diastolic left ventricular dysfunction in a mock circulation: the effect of arterial compliance. Journal of Medical Engineering & Technology, 27, 85–89.

    Article  CAS  Google Scholar 

  12. Khan, T., Levin, H. R., Oz, M. C., et al. (1997). Delayed reversal of impaired metabolic vasodilation in patients with end-stage heart failure during long-term circulatory support with a left ventricular assist device. The Journal of Heart and Lung Transplantation, 16(4), 449–453.

    PubMed  CAS  Google Scholar 

  13. Rogers, J. G., Aaronson, K. D., Boyle, A. J., et al. (2010). Continuous flow left ventricular assist device improves functional capacity and quality of life of advanced heart failure patients. Journal of the American College of Cardiology, 55, 1826–1834.

    Article  PubMed  Google Scholar 

  14. Frazier, O. H., & Delgado, R. M. (2003). Mechanical circulatory support for advanced heart failure: where does it stand in 2003? Circulation, 108, 3064–3068.

    Article  PubMed  CAS  Google Scholar 

  15. Kuvin, J. T., Ar, P., Sliney, K. A., et al. (2003). Assessment of peripheral vascular endothelial function with finger arterial pulse wave amplitude. American Heart Journal, 146, 168–174.

    Article  PubMed  Google Scholar 

  16. Rossi, R., Nuzzo, A., Origliani, G., et al. (2008). Prognostic role of flow-mediated dilation and cardiac risk factors in post-menopausal women. Journal of the American College of Cardiology, 51, 997–1002.

    Article  PubMed  Google Scholar 

  17. Faizi, A. K., Kornmo, D. W., & Agewall, S. (2009). Evaluation of endothelial function using finger plethysmography. Clinical Physiology and Functional Imaging, 29, 372–375.

    Article  PubMed  CAS  Google Scholar 

  18. Rubinshtein, R., Kuvin, J. T., Soffler, M., et al. (2010). Assessment of endothelial function by non-invasive peripheral arterial tonometry predicts late cardiovascular adverse events. European Heart Journal, 31, 1142–1148.

    Article  PubMed  Google Scholar 

  19. Förstermann, U., Mügge, A., Alheid, U., et al. (1988). Selective attenuation of endothelial mediated vasodilation in atherosclerotic human coronary arteries. Circulation Research, 62, 185–190.

    PubMed  Google Scholar 

  20. Treasure, C. B., Vita, J. A., Cox, D. A., et al. (1990). Endothelium-dependent dilation of the coronary microvasculature is impaired in dilated cardiomyopathy. Circulation, 81, 772–779.

    Article  PubMed  CAS  Google Scholar 

  21. Drexler, H. (1998). Endothelium as a therapeutic target in heart failure. Circulation, 98, 2652–2655.

    PubMed  CAS  Google Scholar 

  22. Vanhoutte, P. M. (1996). Endothelium-dependent responses in congestive heart failure. Journal of Molecular and Cellular Cardiology, 28, 2233–2240.

    Article  PubMed  CAS  Google Scholar 

  23. Arnold, J. M. O., Marchiori, G. E., Imrie, J. R., et al. (1991). Large artery function in patients with chronic heart failure. Studies of brachial artery diameter and hemodynamics. Circulation, 84, 2418–2425.

    PubMed  CAS  Google Scholar 

  24. Nakamura, M., Ishikawa, M., Funakoshi, T., et al. (1994). Attenuated endothelium-dependent peripheral vasodilation and clinical characteristics in patients with chronic heart failure. American Heart Journal, 128, 1164–1169.

    Article  PubMed  CAS  Google Scholar 

  25. Ueno, M., Kawashima, S., Tsumoto, S., et al. (1994). Impaired endothelium-dependent vasodilatory responses in hindlimb blood flow in dogs with congestive heart failure. Japanese Circulation Journal, 58, 778–786.

    Article  PubMed  CAS  Google Scholar 

  26. Houben, A. J. H. M., Beljaars, J. H., Hofstra, L., et al. (2003). Microvascular abnormalities in chronic heart failure: a cross-sectional analysis. Microcirculation, 10, 471–478.

    PubMed  Google Scholar 

  27. Amir, O., Radovancevic, B., Delgado, R. M., et al. (2006). Peripheral vascular reactivity in patients with pulsatile vs axial flow left ventricular assist device support. The Journal of Heart and Lung Transplantation, 25, 391–394.

    Article  PubMed  Google Scholar 

  28. Bittner, H. B., Diemel, K. D., Böttner, W., et al. (1992). Effects of the Berlin Heart biventricular assist device on microvascular responses in pre-transplant patients. ASAIO Journal, 38, 779–783.

    PubMed  CAS  Google Scholar 

  29. Drakos, S. G., Kfoury, A. G., Hammond, E. H., et al. (2010). Impact of mechanical unloading on microvascular and associated central remodeling features of the failing human heart. Journal of the American College of Cardiology, 56, 382–391.

    Article  PubMed  Google Scholar 

  30. Slaughter, M. S. (2010). Long-term continuous flow left ventricular assist device support and end-organ function: prospects for destination therapy. Journal of Cardiac Surgery, 25, 490–494.

    Article  PubMed  Google Scholar 

  31. Potapov, E. V., Loebe, M., Nasseri, B. A., et al. (2000). Pulsatile flow in patients with a novel nonpulsatile implantable ventricular assist device. Circulation, 102(suppl III), 183–187.

    Google Scholar 

  32. Mitchell, G. F. (2008). Effects of central arterial aging on the structure and function of the peripheral vasculature: implications for end-organ damage. Journal of Applied Physiology, 105, 1652–1660.

    Article  PubMed  Google Scholar 

  33. Riedel, B., & Schier, R. (2010). Endothelial dysfunction in the perioperative setting. Seminars in Cardiothoracic and Vascular Anesthesia, 14, 41–43.

    Article  PubMed  Google Scholar 

Download references

Conflict of Interest and Funding Sources

The authors of this manuscript do not have any relationships with companies or relevant entities that make products pertinent to this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald R. Dengel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lou, X., Templeton, D.L., John, R. et al. Effects of Continuous Flow Left Ventricular Assist Device Support on Microvascular Endothelial Function. J. of Cardiovasc. Trans. Res. 5, 345–350 (2012). https://doi.org/10.1007/s12265-011-9321-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-011-9321-z

Keywords

Navigation