Skip to main content

Advertisement

Log in

Timp1 Deletion Induces Anxiety-like Behavior in Mice

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

The hippocampus is essential for learning and memory, but it also plays an important role in regulating emotional behavior, as hippocampal excitability and plasticity affect anxiety and fear. Brain synaptic plasticity may be regulated by tissue inhibitor of matrix metalloproteinase 1 (TIMP1), a known protein inhibitor of extracellular matrix (ECM), and the expression of TIMP1 in the hippocampus can be induced by neuronal excitation and various stimuli. However, the involvement of Timp1 in fear learning, anxiety, and hippocampal synaptic function remains to be established. Our study of Timp1 function in vivo revealed that Timp1 knockout mice exhibit anxiety-like behavior but normal fear learning. Electrophysiological results suggested that Timp1 knockout mice showed hyperactivity in the ventral CA1 region, but the basic synaptic transmission and plasticity were normal in the Schaffer collateral pathway. Taken together, our results suggest that deletion of Timp1 in vivo leads to the occurrence of anxiety behaviors, but that Timp1 is not crucial for fear learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: Structure, function, and biochemistry. Circ Res 2003, 92: 827–839.

    Article  PubMed  CAS  Google Scholar 

  2. Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 2006, 69: 562–573.

    Article  PubMed  CAS  Google Scholar 

  3. Ethell IM, Ethell DW. Matrix metalloproteinases in brain development and remodeling: Synaptic functions and targets. J Neurosci Res 2007, 85: 2813–2823.

    Article  PubMed  CAS  Google Scholar 

  4. Arpino V, Brock M, Gill SE. The role of TIMPs in regulation of extracellular matrix proteolysis. Matrix Biol 2015, 44–46: 247–254.

    Article  PubMed  Google Scholar 

  5. Ulrich R, Gerhauser I, Seeliger F, Baumgärtner W, Alldinger S. Matrix metalloproteinases and their inhibitors in the developing mouse brain and spinal cord: A reverse transcription quantitative polymerase chain reaction study. Dev Neurosci 2005, 27: 408–418.

    Article  PubMed  CAS  Google Scholar 

  6. Moore CS, Milner R, Nishiyama A, Frausto RF, Serwanski DR, Pagarigan RR. Astrocytic tissue inhibitor of metalloproteinase-1 (TIMP-1) promotes oligodendrocyte differentiation and enhances CNS myelination. J Neurosci 2011, 31: 6247–6254.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Moore CS, Crocker SJ. An alternate perspective on the roles of TIMPs and MMPs in pathology. Am J Pathol 2012, 180: 12–16.

    Article  PubMed  CAS  Google Scholar 

  8. Rivera S, García-González L, Khrestchatisky M, Baranger K. Metalloproteinases and their tissue inhibitors in Alzheimer’s disease and other neurodegenerative disorders. Cell Mol Life Sci 2019, 76: 3167–3191.

    Article  PubMed  CAS  Google Scholar 

  9. Crocker SJ, Pagenstecher A, Campbell IL. The TIMPs tango with MMPs and more in the central nervous system. J Neurosci Res 2004, 75: 1–11.

    Article  PubMed  CAS  Google Scholar 

  10. Knight BE, Kozlowski N, Havelin J, King T, Crocker SJ, Young EE, et al. TIMP-1 attenuates the development of inflammatory pain through MMP-dependent and receptor-mediated cell signaling mechanisms. Front Mol Neurosci 2019, 12: 220.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Jourquin J, Tremblay E, Bernard A, Charton G, Chaillan FA, Marchetti E, et al. Tissue inhibitor of metalloproteinases-1 (TIMP-1) modulates neuronal death, axonal plasticity, and learning and memory. Eur J Neurosci 2005, 22: 2569–2578.

    Article  PubMed  Google Scholar 

  12. Stetler-Stevenson WG. Tissue inhibitors of metalloproteinases in cell signaling: Metalloproteinase-independent biological activities. Sci Signal 2008, 1: re6.

  13. Jung KK, Liu XW, Chirco R, Fridman R, Kim HR. Identification of CD63 as a tissue inhibitor of metalloproteinase-1 interacting cell surface protein. EMBO J 2006, 25: 3934–3942.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Tsagaraki I, Tsilibary EC, Tzinia AK. TIMP-1 interaction with αvβ3 integrin confers resistance to human osteosarcoma cell line MG-63 against TNF-α-induced apoptosis. Cell Tissue Res 2010, 342: 87–96.

    Article  PubMed  CAS  Google Scholar 

  15. Saura CA, Choi SY, Beglopoulos V, Malkani S, Zhang D, Shankaranarayana Rao BS, et al. Loss of presenilin function causes impairments of memory and synaptic plasticity followed by age-dependent neurodegeneration. Neuron 2004, 42: 23–36.

    Article  PubMed  CAS  Google Scholar 

  16. Felix-Ortiz AC, Beyeler A, Seo C, Leppla CA, Wildes CP, Tye KM. BLA to vHPC inputs modulate anxiety-related behaviors. Neuron 2013, 79: 658–664.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Kida H, Sakimoto Y, Mitsushima D. Slice patch clamp technique for analyzing learning-induced plasticity. JoVE 2017, 129: 55876. https://doi.org/10.3791/55876.

    Article  CAS  Google Scholar 

  18. Zhang C, Atasoy D, Araç D, Yang X, Fucillo MV, Robison AJ, et al. Neurexins physically and functionally interact with GABA(A) receptors. Neuron 2010, 66: 403–416.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Walf AA, Frye CA. The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat Protoc 2007, 2: 322–328.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Villeda SA, Luo J, Mosher KI, Zou B, Britschgi M, Bieri G, et al. The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature 2011, 477: 90–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Du F. Golgi-cox staining of neuronal dendrites and dendritic spines with FD rapid GolgiStain™ kit. Curr Protoc Neurosci 2019, 88: e69.

    Article  PubMed  Google Scholar 

  22. Tovote P, Fadok JP, Lüthi A. Neuronal circuits for fear and anxiety. Nat Rev Neurosci 2015, 16: 317–331.

    Article  PubMed  CAS  Google Scholar 

  23. Ghasemi M, Navidhamidi M, Rezaei F, Azizikia A, Mehranfard N. Anxiety and hippocampal neuronal activity: Relationship and potential mechanisms.Cogn Affect Behav Neurosci 2022, 22: 431–449.

  24. Dong Z, Chen W, Chen C, Wang H, Cui W, Tan Z, et al. CUL3 deficiency causes social deficits and anxiety-like behaviors by impairing excitation-inhibition balance through the promotion of cap-dependent translation. Neuron 2020, 105: 475-490.e6.

    Article  PubMed  CAS  Google Scholar 

  25. Park HR, Cai M, Yang EJ. Neurogenic interventions for fear memory via modulation of the hippocampal function and neural circuits. Int J Mol Sci 2022, 23: 3582.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Jimenez JC, Su K, Goldberg AR, Luna VM, Biane JS, Ordek G, et al. Anxiety cells in a hippocampal-hypothalamic circuit. Neuron 2018, 97: 670-683.e6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Zhang C, Wu B, Beglopoulos V, Wines-Samuelson M, Zhang D, Dragatsis I, et al. Presenilins are essential for regulating neurotransmitter release. Nature 2009, 460: 632–636.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Nicoll RA. A brief history of long-term potentiation. Neuron 2017, 93: 281–290.

    Article  PubMed  CAS  Google Scholar 

  29. He Y, Kulasiri D, Samarasinghe S. Modelling bidirectional modulations in synaptic plasticity: A biochemical pathway model to understand the emergence of long term potentiation (LTP) and long term depression (LTD). J Theor Biol 2016, 403: 159–177.

    Article  PubMed  CAS  Google Scholar 

  30. Jackson HW, Defamie V, Waterhouse P, Khokha R. TIMPs: Versatile extracellular regulators in cancer. Nat Rev Cancer 2017, 17: 38–53.

    Article  PubMed  CAS  Google Scholar 

  31. Eckfeld C, Häußler D, Schoeps B, Hermann CD, Krüger A. Functional disparities within the TIMP family in cancer: Hints from molecular divergence. Cancer Metastasis Rev 2019, 38: 469–481.

    Article  PubMed  CAS  Google Scholar 

  32. Grünwald B, Schoeps B, Krüger A. Recognizing the molecular multifunctionality and interactome of TIMP-1. Trends Cell Biol 2019, 29: 6–19.

    Article  PubMed  Google Scholar 

  33. Gomis-Rüth FX, Maskos K, Betz M, Bergner A, Huber R, Suzuki K, et al. Mechanism of inhibition of the human matrix metalloproteinase stromelysin-1 by TIMP-1. Nature 1997, 389: 77–81.

    Article  PubMed  Google Scholar 

  34. Cruz-Munoz W, Khokha R. The role of tissue inhibitors of metalloproteinases in tumorigenesis and metastasis. Crit Rev Clin Lab Sci 2008, 45: 291–338.

    Article  PubMed  CAS  Google Scholar 

  35. Cui H, Seubert B, Stahl E, Dietz H, Reuning U, Moreno-Leon L, et al. Tissue inhibitor of metalloproteinases-1 induces a pro-tumourigenic increase of miR-210 in lung adenocarcinoma cells and their exosomes. Oncogene 2015, 34: 3640–3650.

    Article  PubMed  CAS  Google Scholar 

  36. Grünwald B, Harant V, Schaten S, Frühschütz M, Spallek R, Höchst B, et al. Pancreatic premalignant lesions secrete tissue inhibitor of metalloproteinases-1, which activates hepatic stellate cells via CD63 signaling to create a premetastatic niche in the liver. Gastroenterology 2016, 151: 1011-1024.e7.

    Article  PubMed  Google Scholar 

  37. Nicaise AM, Johnson KM, Willis CM, Guzzo RM, Crocker SJ. TIMP-1 promotes oligodendrocyte differentiation through receptor-mediated signaling. Mol Neurobiol 2019, 56: 3380–3392.

    Article  PubMed  CAS  Google Scholar 

  38. Saha P, Sarkar S, Paidi RK, Biswas SC. TIMP-1: A key cytokine released from activated astrocytes protects neurons and ameliorates cognitive behaviours in a rodent model of Alzheimer’s disease. Brain Behav Immun 2020, 87: 804–819.

    Article  PubMed  CAS  Google Scholar 

  39. Tan HK, Heywood D, Ralph GS, Bienemann A, Baker AH, Uney JB. Tissue inhibitor of metalloproteinase 1 inhibits excitotoxic cell death in neurons. Mol Cell Neurosci 2003, 22: 98–106.

    Article  PubMed  CAS  Google Scholar 

  40. Agapova OA, Kaufman PL, Lucarelli MJ, Gabelt BT, Hernandez MR. Differential expression of matrix metalloproteinases in monkey eyes with experimental glaucoma or optic nerve transection. Brain Res 2003, 967: 132–143.

    Article  PubMed  CAS  Google Scholar 

  41. Okulski P, Jay TM, Jaworski J, Duniec K, Dzwonek J, Konopacki FA, et al. TIMP-1 abolishes MMP-9-dependent long-lasting long-term potentiation in the prefrontal cortex. Biol Psychiatry 2007, 62: 359–362.

    Article  PubMed  CAS  Google Scholar 

  42. Aoki T, Kataoka H, Moriwaki T, Nozaki K, Hashimoto N. Role of TIMP-1 and TIMP-2 in the progression of cerebral aneurysms. Stroke 2007, 38: 2337–2345.

    Article  PubMed  CAS  Google Scholar 

  43. Mercan Isik C, Uzun Cicek A, Ulger D, Bakir S. SIRT1, MMP-9 and TIMP-1 levels in children with specific learning disorder. J Psychiatr Res 2022, 152: 352–359.

    Article  PubMed  Google Scholar 

  44. Jaworski J, Kalita K, Knapska E. C-Fos and neuronal plasticity: The aftermath of Kaczmarek’s theory. Acta Neurobiol Exp (Wars) 2018, 78: 287–296.

    Article  PubMed  Google Scholar 

  45. Kaczmarek L. From c-Fos to MMP-9: In control of synaptic plasticity to produce healthy and diseased mind, a personal view. Postepy Biochem 2018, 64: 101–109.

    Article  PubMed  Google Scholar 

  46. Magnowska M, Gorkiewicz T, Suska A, Wawrzyniak M, Rutkowska-Wlodarczyk I, Kaczmarek L, et al. Transient ECM protease activity promotes synaptic plasticity. Sci Rep 2016, 6: 27757.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Young DA, Phillips BW, Lundy C, Nuttall RK, Hogan A, Schultz GA, et al. Identification of an initiator-like element essential for the expression of the tissue inhibitor of metalloproteinases-4 (Timp-4) gene. Biochem J 2002, 364: 89–99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Baker AH, Edwards DR, Murphy G. Metalloproteinase inhibitors: Biological actions and therapeutic opportunities. J Cell Sci 2002, 115: 3719–3727.

    Article  PubMed  CAS  Google Scholar 

  49. Murphy G. Tissue inhibitors of metalloproteinases. Genome Biol 2011, 12: 233.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Cabral-Pacheco GA, Garza-Veloz I, Castruita-De la Rosa C, Ramirez-Acuña JM, Perez-Romero BA, Guerrero-Rodriguez JF, et al. The roles of matrix metalloproteinases and their inhibitors in human diseases. Int J Mol Sci 2020, 21: 9739.

  51. Fanselow MS, Dong HW. Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 2010, 65: 7–19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Li Y, Xu J, Liu Y, Zhu J, Liu N, Zeng W, et al. A distinct entorhinal cortex to hippocampal CA1 direct circuit for olfactory associative learning. Nat Neurosci 2017, 20: 559–570.

    Article  PubMed  CAS  Google Scholar 

  53. Zhou X, Huang Z, Zhang J, Chen JL, Yao PW, Mai CL, et al. Chronic oral administration of magnesium-L-threonate prevents oxaliplatin-induced memory and emotional deficits by normalization of TNF-α/NF-κB signaling in rats. Neurosci Bull 2021, 37: 55–69.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Key-Area Research and Development Program of Guangdong Province (2019B030335001); the National Natural Science Foundation of China (81925011, 92149304, and 32200636); the R&D Program of Beijing Municipal Education Commission (KM202310025028) and the High-Level Teachers project (CIT&TCD20190334); and the Youth Beijing Scholars Program (015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zi-Bing Jin, Xueyun Bi or Chen Zhang.

Ethics declarations

Conflict of interest

The authors claim that there are no conflicts of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 451 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zheng, W., Zhu, Z. et al. Timp1 Deletion Induces Anxiety-like Behavior in Mice. Neurosci. Bull. (2023). https://doi.org/10.1007/s12264-023-01163-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12264-023-01163-1

Keywords

Navigation