Skip to main content
Log in

Single-Cell Mapping of Brain Myeloid Cell Subsets Reveals Key Transcriptomic Changes Favoring Neuroplasticity after Ischemic Stroke

  • OriginalArticle
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Interactions between brain-resident and peripheral infiltrated immune cells are thought to contribute to neuroplasticity after cerebral ischemia. However, conventional bulk sequencing makes it challenging to depict this complex immune network. Using single-cell RNA sequencing, we mapped compositional and transcriptional features of peri-infarct immune cells. Microglia were the predominant cell type in the peri-infarct region, displaying a more diverse activation pattern than the typical pro- and anti-inflammatory state, with axon tract-associated microglia (ATMs) being associated with neuronal regeneration. Trajectory inference suggested that infiltrated monocyte-derived macrophages (MDMs) exhibited a gradual fate trajectory transition to activated MDMs. Inter-cellular crosstalk between MDMs and microglia orchestrated anti-inflammatory and repair-promoting microglia phenotypes and promoted post-stroke neurogenesis, with SOX2 and related Akt/CREB signaling as the underlying mechanisms. This description of the brain’s immune landscape and its relationship with neurogenesis provides new insight into promoting neural repair by regulating neuroinflammatory responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kluge MG, Kracht L, Abdolhoseini M, Ong LK, Johnson SJ, Nilsson M. Impaired microglia process dynamics post-stroke are specific to sites of secondary neurodegeneration. Glia 2017, 65: 1885–1899.

    Article  Google Scholar 

  2. Feng Y, Liao S, Wei C, Jia D, Wood K, Liu Q, et al. Infiltration and persistence of lymphocytes during late-stage cerebral ischemia in middle cerebral artery occlusion and photothrombotic stroke models. J Neuroinflammation 2017, 14: 248.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Eldahshan W, Fagan SC, Ergul A. Inflammation within the neurovascular unit: Focus on microglia for stroke injury and recovery. Pharmacol Res 2019, 147: 104349.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Fang W, Zhai X, Han D, Xiong X, Wang T, Zeng X, et al. CCR2-dependent monocytes/macrophages exacerbate acute brain injury but promote functional recovery after ischemic stroke in mice. Theranostics 2018, 8: 3530–3543.

    Article  CAS  PubMed Central  Google Scholar 

  5. Ito M, Komai K, Mise-Omata S, Iizuka-Koga M, Noguchi Y, Kondo T, et al. Brain regulatory T cells suppress astrogliosis and potentiate neurological recovery. Nature 2019, 565: 246–250.

    Article  CAS  PubMed  Google Scholar 

  6. Owens R, Grabert K, Davies CL, Alfieri A, Antel JP, Healy LM, et al. Divergent neuroinflammatory regulation of microglial TREM expression and involvement of NF-κB. Front Cell Neurosci 2017, 11: 56.

    PubMed  PubMed Central  Google Scholar 

  7. Van Hove H, Martens L, Scheyltjens I, De Vlaminck K, Pombo Antunes AR, De Prijck S, et al. A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. Nat Neurosci 2019, 22: 1021–1035.

    Article  PubMed  Google Scholar 

  8. Plemel JR, Stratton JA, Michaels NJ, Rawji KS, Zhang E, Sinha S, et al. Microglia response following acute demyelination is heterogeneous and limits infiltrating macrophage dispersion. Sci Adv 2020, 6: eaay6324.

    Article  CAS  PubMed Central  Google Scholar 

  9. Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK, et al. A unique microglia type associated with restricting development of alzheimer’s disease. Cell 2017, 169: 1276-1290.e17.

    Article  CAS  PubMed  Google Scholar 

  10. Jordão MJC, Sankowski R, Brendecke SM, Sagar Locatelli G, Tai YH, et al. Single-cell profiling identifies myeloid cell subsets with distinct fates during neuroinflammation. Science 2019, 363: eaat7554.

    Article  Google Scholar 

  11. Wang R, Liu Y, Ye Q, Hassan SH, Zhao J, Li S, et al. RNA sequencing reveals novel macrophage transcriptome favoring neurovascular plasticity after ischemic stroke. J Cereb Blood Flow Metab 2020, 40: 720–738.

    Article  CAS  PubMed  Google Scholar 

  12. Zhao S, Zhao M, Xiao T, Jolkkonen J, Zhao C. Constraint-induced movement therapy overcomes the intrinsic axonal growth-inhibitory signals in stroke rats. Stroke 2013, 44: 1698–1705.

    Article  CAS  PubMed  Google Scholar 

  13. Satija R, Farrell JA, Gennert D, Schier AF, Regev A. Spatial reconstruction of single-cell gene expression data. Nat Biotechnol 2015, 33: 495–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Franzén O, Gan LM, Björkegren JLM. PanglaoDB: A web server for exploration of mouse and human single-cell RNA sequencing data. Database (Oxford) 2019, 2019: baz046.

  15. Hammond TR, Dufort C, Dissing-Olesen L, Giera S, Young A, Wysoker A, et al. Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity 2019, 50: 253–271.e6.

    Article  CAS  Google Scholar 

  16. Kim EK, Choi EJ. Compromised MAPK signaling in human diseases: An update. Arch Toxicol 2015, 89: 867–882.

    Article  CAS  PubMed  Google Scholar 

  17. Qiu X, Mao Q, Tang Y, Wang L, Chawla R, Pliner HA, et al. Reversed graph embedding resolves complex single-cell trajectories. Nat Methods 2017, 14: 979–982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan CH, et al. Inference and analysis of cell-cell communication using Cell Chat. Nat Commun 2021, 12: 1088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Andrews WD, Barber M, Nemitz M, Memi F, Parnavelas JG. Semaphorin3A-neuropilin1 signalling is involved in the generation of cortical interneurons. Brain Struct Funct 2017, 222: 2217–2233.

    Article  CAS  PubMed  Google Scholar 

  20. Liu Z, An H, Song P, Wang D, Li S, Chen K, et al. Potential targets of TMEM176A in the growth of glioblastoma cells. Onco Targets Ther 2018, 11: 7763–7775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rogall R, Rabenstein M, Vay S, Bach A, Pikhovych A, Baermann J, et al. Bioluminescence imaging visualizes osteopontin-induced neurogenesis and neuroblast migration in the mouse brain after stroke. Stem Cell Res Ther 2018, 9: 182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Janky R, Verfaillie A, Imrichová H, Van de Sande B, Standaert L, Christiaens V, et al. iRegulon: From a gene list to a gene regulatory network using large motif and track collections. PLoS Comput Biol 2014, 10: e1003731.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cui CP, Zhang Y, Wang C, Yuan F, Li H, Yao Y, et al. Dynamic ubiquitylation of Sox2 regulates proteostasis and governs neural progenitor cell differentiation. Nat Commun 2018, 9: 4648.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zheng K, Lin L, Jiang W, Chen L, Zhang X, Zhang Q, et al. Single-cell RNA-seq reveals the transcriptional landscape in ischemic stroke. J Cereb Blood Flow Metab 2022, 42: 56–73.

    Article  CAS  PubMed  Google Scholar 

  25. Kurisu K, Zheng Z, Kim JY, Shi J, Kanoke A, Liu J, et al. Triggering receptor expressed on myeloid cells-2 expression in the brain is required for maximal phagocytic activity and improved neurological outcomes following experimental stroke. J Cereb Blood Flow Metab 2019, 39: 1906–1918.

    Article  CAS  PubMed  Google Scholar 

  26. Greenhalgh AD, Zarruk JG, Healy LM, Baskar Jesudasan SJ, Jhelum P, Salmon CK, et al. Peripherally derived macrophages modulate microglial function to reduce inflammation after CNS injury. PLoS Biol 2018, 16: e2005264.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gilchrist SE, Goudarzi S, Hafizi S. Gas6 inhibits toll-like receptor-mediated inflammatory pathways in mouse microglia via axl and mer. Front Cell Neurosci 2020, 14: 576650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yin F, Banerjee R, Thomas B, Zhou P, Qian L, Jia T, et al. Exaggerated inflammation, impaired host defense, and neuropathology in progranulin-deficient mice. J Exp Med 2010, 207: 117–128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Deng S, Hirschberg A, Worzfeld T, Penachioni JY, Korostylev A, Swiercz JM, et al. Plexin-B2, but not plexin-B1, critically modulates neuronal migration and patterning of the developing nervous system in vivo. J Neurosci 2007, 27: 6333–6347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yu F, Huang T, Ran Y, Li D, Ye L, Tian G, et al. New insights into the roles of microglial regulation in brain plasticity-dependent stroke recovery. Front Cell Neurosci 2021, 15: 727899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Werner Y, Mass E, Ashok Kumar P, Ulas T, Händler K, Horne A, et al. Cxcr4 distinguishes HSC-derived monocytes from microglia and reveals monocyte immune responses to experimental stroke. Nat Neurosci 2020, 23: 351–362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zywitza V, Misios A, Bunatyan L, Willnow TE, Rajewsky N. Single-cell transcriptomics characterizes cell types in the subventricular zone and uncovers molecular defects impairing adult neurogenesis. Cell Rep 2018, 25: 2457-2469.e8.

    Article  CAS  PubMed  Google Scholar 

  33. Zhu Y, Crowley SC, Latimer AJ, Lewis GM, Nash R, Kucenas S. Migratory neural crest cells phagocytose dead cells in the developing nervous system. Cell 2019, 179: 74–89.e10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sailer MHM, Hazel TG, Panchision DM, Hoeppner DJ, Schwab ME, McKay RDG. BMP2 and FGF2 cooperate to induce neural-crest-like fates from fetal and adult CNS stem cells. J Cell Sci 2005, 118: 5849–5860.

    Article  CAS  PubMed  Google Scholar 

  35. Mir S, Cai W, Carlson SW, Saatman KE, Andres DA. IGF-1 mediated neurogenesis involves a novel RIT1/Akt/Sox2 cascade. Sci Rep 2017, 7: 3283.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ma Y, Deng M, Liu M. Effect of differently polarized macrophages on proliferation and differentiation of ependymal cells from adult spinal cord. J Neurotrauma 2019, 36: 2337–2347.

    Article  PubMed  Google Scholar 

  37. Wu H, Wang X, Liu S, Wu Y, Zhao T, Chen X, et al. Sema4C participates in myogenic differentiation in vivo and in vitro through the p38 MAPK pathway. Eur J Cell Biol 2007, 86: 331–344.

    Article  CAS  PubMed  Google Scholar 

  38. Smeester BA, Slipek NJ, Pomeroy EJ, Bomberger HE, Shamsan GA, Peterson JJ, et al. SEMA4C is a novel target to limit osteosarcoma growth, progression, and metastasis. Oncogene 2020, 39: 1049–1062.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the NHC Key Laboratory of Immunodermatology (China Medical University), the Key Laboratory of Immunodermatology, and the Ministry of Education (China Medical University) for providing experimental support. This work was supported by the National Natural Science Foundation of China (82071467), the International (Regional) Cooperation and Exchange Program of the National Natural Science Foundation of China (82111330075), the National Natural Science Foundation for Youth Scholars of China (81801053), the Innovation Team Support Plan of Universities in Liaoning Province (LT2019015), the Liaoning Provincial Key Research and Development Guidance Program (2019JH8/10300002), and the Liaoning Revitalization Talents Plan (XLYC1802097).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Qiu or Xiuchun Zhang.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2551 kb)

Supplementary file2 (PDF 2953 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Cheng, X., Zhao, C. et al. Single-Cell Mapping of Brain Myeloid Cell Subsets Reveals Key Transcriptomic Changes Favoring Neuroplasticity after Ischemic Stroke. Neurosci. Bull. 40, 65–78 (2024). https://doi.org/10.1007/s12264-023-01109-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-023-01109-7

Keywords

Navigation