Skip to main content

Advertisement

Log in

Mitochondrial Regulation of Macrophages in Innate Immunity and Diverse Roles of Macrophages During Cochlear Inflammation

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Macrophages are essential components of the innate immune system and constitute a non-specific first line of host defense against pathogens and inflammation. Mitochondria regulate macrophage activation and innate immune responses in various inflammatory diseases, including cochlear inflammation. The distribution, number, and morphological characteristics of cochlear macrophages change significantly across different inner ear regions under various pathological conditions, including noise exposure, ototoxicity, and age-related degeneration. However, the exact mechanism underlying the role of mitochondria in macrophages in auditory function remains unclear. Here, we summarize the major factors and mitochondrial signaling pathways (e.g., metabolism, mitochondrial reactive oxygen species, mitochondrial DNA, and the inflammasome) that influence macrophage activation in the innate immune response. In particular, we focus on the properties of cochlear macrophages, activated signaling pathways, and the secretion of inflammatory cytokines after acoustic injury. We hope this review will provide new perspectives and a basis for future research on cochlear inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell 2010, 140: 805–820.

    Article  CAS  PubMed  Google Scholar 

  2. Li D, Wu M. Pattern recognition receptors in health and diseases. Signal Transduct Target Ther 2021, 6: 291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gong T, Liu L, Jiang W, Zhou R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat Rev Immunol 2020, 20: 95–112.

    Article  CAS  PubMed  Google Scholar 

  4. Rumpret M, von Richthofen HJ, Peperzak V, Meyaard L. Inhibitory pattern recognition receptors. J Exp Med 2022, 219: e20211463.

    Article  CAS  PubMed  Google Scholar 

  5. Hudson BI, Lippman ME. Targeting RAGE signaling in inflammatory disease. Annu Rev Med 2018, 69: 349–364.

    Article  CAS  PubMed  Google Scholar 

  6. Heng BC, Aubel D, Fussenegger M. G protein-coupled receptors revisited: Therapeutic applications inspired by synthetic biology. Annu Rev Pharmacol Toxicol 2014, 54: 227–249.

    Article  CAS  PubMed  Google Scholar 

  7. Eisenhut M, Wallace H. Ion channels in inflammation. Pflugers Arch Eur J Physiol 2011, 461: 401–421.

    Article  CAS  Google Scholar 

  8. Roh JS, Sohn DH. Damage-associated molecular patterns in inflammatory diseases. Immune Netw 2018, 18: e27.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Angajala A, Lim S, Phillips JB, Kim JH, Yates C, You Z. Diverse roles of mitochondria in immune responses: Novel insights into immuno-metabolism. Front Immunol 2018, 9: 1605.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Weinberg SE, Sena LA, Chandel NS. Mitochondria in the regulation of innate and adaptive immunity. Immunity 2015, 42: 406–417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nakahira K, Haspel JA, Rathinam VAK, Lee SJ, Dolinay T, Lam HC, et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol 2011, 12: 222–230.

    Article  CAS  PubMed  Google Scholar 

  12. Shimada K, Crother TR, Karlin J, Dagvadorj J, Chiba N, Chen S, et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 2012, 36: 401–414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. West AP, Brodsky IE, Rahner C, Woo DK, Erdjument-Bromage H, Tempst P, et al. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 2011, 472: 476–480.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dostert C, Pétrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 2008, 320: 674–677.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Park J, Choi H, Min JS, Park SJ, Kim JH, Park HJ, et al. Mitochondrial dynamics modulate the expression of pro-inflammatory mediators in microglial cells. J Neurochem 2013, 127: 221–232.

    Article  CAS  PubMed  Google Scholar 

  16. Choudhuri S, Chowdhury IH, Garg NJ. Mitochondrial regulation of macrophage response against pathogens. Front Immunol 2021, 11: 622602.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol 2018, 233: 6425–6440.

    Article  CAS  PubMed  Google Scholar 

  18. Huang SCC, Smith AM, Everts B, Colonna M, Pearce EL, Schilling JD, et al. Metabolic reprogramming mediated by the mTORC2-IRF4 signaling axis is essential for macrophage alternative activation. Immunity 2016, 45: 817–830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Newsholme P, Curi R, Gordon S, Newsholme EA. Metabolism of glucose, glutamine, long-chain fatty acids and ketone bodies by murine macrophages. Biochem J 1986, 239: 121–125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yu Q, Wang Y, Dong L, He Y, Liu R, Yang Q, et al. Regulations of glycolytic activities on macrophages functions in tumor and infectious inflammation. Front Cell Infect Microbiol 2020, 10: 287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kelly B, O’Neill LAJ. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res 2015, 25: 771–784.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Freemerman AJ, Johnson AR, Sacks GN, Milner JJ, Kirk EL, Troester MA, et al. Metabolic reprogramming of macrophages: Glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype. J Biol Chem 2014, 289: 7884–7896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cramer T, Yamanishi Y, Clausen BE, Förster I, Pawlinski R, Mackman N, et al. HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell 2003, 112: 645–657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim JW, Tchernyshyov I, Semenza GL, Dang CV. HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia. Cell Metab 2006, 3: 177–185.

    Article  PubMed  Google Scholar 

  25. Palsson-McDermott EM, Curtis AM, Goel G, Lauterbach MAR, Sheedy FJ, Gleeson LE, et al. Pyruvate kinase M2 regulates Hif-1α activity and IL-1β induction and is a critical determinant of the Warburg effect in LPS-activated macrophages. Cell Metab 2015, 21: 65–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nagy C, Haschemi A. Time and demand are two critical dimensions of immunometabolism: The process of macrophage activation and the pentose phosphate pathway. Front Immunol 2015, 6: 164.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Baardman J, Verberk SGS, Prange KHM, van Weeghel M, van der Velden S, Ryan DG, et al. A defective pentose phosphate pathway reduces inflammatory macrophage responses during hypercholesterolemia. Cell Rep 2018, 25: 2044-2052.e5.

    Article  CAS  PubMed  Google Scholar 

  28. Tannahill GM, Curtis AM, Adamik J, Palsson-McDermott EM, McGettrick AF, Goel G, et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 2013, 496: 238–242.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ma J, Wei K, Liu J, Tang K, Zhang H, Zhu L, et al. Glycogen metabolism regulates macrophage-mediated acute inflammatory responses. Nat Commun 2020, 11: 1769.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Haschemi A, Kosma P, Gille L, Evans CR, Burant CF, Starkl P, et al. The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism. Cell Metab 2012, 15: 813–826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Diskin C, Pålsson-McDermott EM. Metabolic modulation in macrophage effector function. Front Immunol 2018, 9: 270.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Vats D, Mukundan L, Odegaard JI, Zhang L, Smith KL, Morel CR, et al. Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation. Cell Metab 2006, 4: 13–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Huang SCC, Everts B, Ivanova Y, O’Sullivan D, Nascimento M, Smith AM, et al. Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nat Immunol 2014, 15: 846–855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Divakaruni AS, Hsieh WY, Minarrieta L, Duong TN, Kim KKO, DeSousa BR, et al. Etomoxir inhibits macrophage polarization by disrupting CoA homeostasis. Cell Metab 2018, 28: 490-503.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nomura M, Liu J, Rovira II, Gonzalez-Hurtado E, Lee J, Wolfgang MJ, et al. Fatty acid oxidation in macrophage polarization. Nat Immunol 2016, 17: 216–217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang F, Zhang S, Vuckovic I, Jeon R, Lerman A, Folmes CD, et al. Glycolytic stimulation is not a requirement for M2 macrophage differentiation. Cell Metab 2018, 28: 463-475.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Morris G, Gevezova M, Sarafian V, Maes M. Redox regulation of the immune response. Cell Mol Immunol 2022, 19: 1079–1101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu PS, Wang H, Li X, Chao T, Teav T, Christen S, et al. α-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nat Immunol 2017, 18: 985–994.

    Article  CAS  PubMed  Google Scholar 

  39. Jha AK, Huang SCC, Sergushichev A, Lampropoulou V, Ivanova Y, Loginicheva E, et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 2015, 42: 419–430.

    Article  CAS  PubMed  Google Scholar 

  40. Covarrubias AJ, Aksoylar HI, Yu J, Snyder NW, Worth AJ, Iyer SS, et al. Akt-mTORC1 signaling regulates Acly to integrate metabolic input to control of macrophage activation. eLife 2016, 5: e11612.

  41. Infantino V, Iacobazzi V, Menga A, Avantaggiati ML, Palmieri F. A key role of the mitochondrial citrate carrier (SLC25A1) in TNFα- and IFNγ-triggered inflammation. Biochim Biophys Acta 2014, 1839: 1217–1225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. O’Neill LAJ. A critical role for citrate metabolism in LPS signalling. Biochem J 2011, 438: e5–e6.

    Article  CAS  PubMed  Google Scholar 

  43. Ricciotti E, FitzGerald GA. Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol 2011, 31: 986–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Infantino V, Convertini P, Cucci L, Panaro MA, Di Noia MA, Calvello R, et al. The mitochondrial citrate carrier: A new player in inflammation. Biochem J 2011, 438: 433–436.

    Article  CAS  PubMed  Google Scholar 

  45. McFadden BA, Purohit S. Itaconate, an isocitrate lyase-directed inhibitor in Pseudomonas indigofera. J Bacteriol 1977, 131: 136–144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Marrocco A, Ortiz LA. Role of metabolic reprogramming in pro-inflammatory cytokine secretion from LPS or silica-activated macrophages. Front Immunol 2022, 13: 936167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lampropoulou V, Sergushichev A, Bambouskova M, Nair S, Vincent EE, Loginicheva E, et al. Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation. Cell Metab 2016, 24: 158–166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bambouskova M, Gorvel L, Lampropoulou V, Sergushichev A, Loginicheva E, Johnson K, et al. Electrophilic properties of itaconate and derivatives regulate the IκBζ-ATF3 inflammatory axis. Nature 2018, 556: 501–504.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mills EL, Ryan DG, Prag HA, Dikovskaya D, Menon D, Zaslona Z, et al. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature 2018, 556: 113–117.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. O’Neill LAJ, Artyomov MN. Itaconate: The poster child of metabolic reprogramming in macrophage function. Nat Rev Immunol 2019, 19: 273–281.

    Article  CAS  PubMed  Google Scholar 

  51. Runtsch MC, Angiari S, Hooftman A, Wadhwa R, Zhang Y, Zheng Y, et al. Itaconate and itaconate derivatives target JAK1 to suppress alternative activation of macrophages. Cell Metab 2022, 34: 487-501.e8.

    Article  CAS  PubMed  Google Scholar 

  52. Mills E, O’Neill LAJ. Succinate: A metabolic signal in inflammation. Trends Cell Biol 2014, 24: 313–320.

    Article  CAS  PubMed  Google Scholar 

  53. Mills EL, Kelly B, Logan A, Costa ASH, Varma M, Bryant CE, et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell 2016, 167: 457-470.e13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Littlewood-Evans A, Sarret S, Apfel V, Loesle P, Dawson J, Zhang J, et al. GPR91 senses extracellular succinate released from inflammatory macrophages and exacerbates rheumatoid arthritis. J Exp Med 2016, 213: 1655–1662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Keiran N, Ceperuelo-Mallafré V, Calvo E, Hernández-Alvarez MI, Ejarque M, Núñez-Roa C, et al. SUCNR1 controls an anti-inflammatory program in macrophages to regulate the metabolic response to obesity. Nat Immunol 2019, 20: 581–592.

    Article  CAS  PubMed  Google Scholar 

  56. Peruzzotti-Jametti L, Bernstock JD, Vicario N, Costa ASH, Kwok CK, Leonardi T, et al. Macrophage-derived extracellular succinate licenses neural stem cells to suppress chronic neuroinflammation. Cell Stem Cell 2018, 22: 355-368.e13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Canton M, Sánchez-Rodríguez R, Spera I, Venegas FC, Favia M, Viola A, et al. Reactive oxygen species in macrophages: Sources and targets. Front Immunol 2021, 12: 734229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Panday A, Sahoo MK, Osorio D, Batra S. NADPH oxidases: An overview from structure to innate immunity-associated pathologies. Cell Mol Immunol 2015, 12: 5–23.

    Article  CAS  PubMed  Google Scholar 

  59. Li X, Fang P, Mai J, Choi ET, Wang H, Yang XF. Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. J Hematol Oncol 2013, 6: 19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang D, Malo D, Hekimi S. Elevated mitochondrial reactive oxygen species generation affects the immune response via hypoxia-inducible factor-1alpha in long-lived Mclk1+/- mouse mutants. J Immunol 2010, 184: 582–590.

    Article  CAS  PubMed  Google Scholar 

  61. Chandel NS, Trzyna WC, McClintock DS, Schumacker PT. Role of oxidants in NF-kappa B activation and TNF-alpha gene transcription induced by hypoxia and endotoxin. J Immunol 2000, 165: 1013–1021.

    Article  CAS  PubMed  Google Scholar 

  62. Chandel NS. Mitochondria as signaling organelles. BMC Biol 2014, 12: 34.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Chandel NS, Schumacker PT, Arch RH. Reactive oxygen species are downstream products of TRAF-mediated signal transduction. J Biol Chem 2001, 276: 42728–42736.

    Article  CAS  PubMed  Google Scholar 

  64. Herb M, Gluschko A, Wiegmann K, Farid A, Wolf A, Utermöhlen O, et al. Mitochondrial reactive oxygen species enable proinflammatory signaling through disulfide linkage of NEMO. Sci Signal 2019, 12: eaar5926.

  65. Roca FJ, Whitworth LJ, Prag HA, Murphy MP, Ramakrishnan L. Tumor necrosis factor induces pathogenic mitochondrial ROS in tuberculosis through reverse electron transport. Science 2022, 376: eabh2841.

  66. West AP, Shadel GS. Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat Rev Immunol 2017, 17: 363–375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Xiao F, Wang C, Yin H, Yu J, Chen S, Fang J, et al. Leucine deprivation inhibits proliferation and induces apoptosis of human breast cancer cells via fatty acid synthase. Oncotarget 2016, 7: 63679–63689.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Kausar S, Yang L, Abbas MN, Hu X, Zhao Y, Zhu Y, et al. Mitochondrial DNA: A key regulator of anti-microbial innate immunity. Genes 2020, 11: 86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhang W, Li G, Luo R, Lei J, Song Y, Wang B, et al. Cytosolic escape of mitochondrial DNA triggers cGAS-STING-NLRP3 axis-dependent nucleus pulposus cell pyroptosis. Exp Mol Med 2022, 54: 129–142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Huang LS, Hong Z, Wu W, Xiong S, Zhong M, Gao X, et al. mtDNA activates cGAS signaling and suppresses the YAP-mediated endothelial cell proliferation program to promote inflammatory injury. Immunity 2020, 52: 475-486.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Schroder K, Tschopp J. The inflammasomes. Cell 2010, 140: 821–832.

    Article  CAS  PubMed  Google Scholar 

  72. Lin HB, Wei GS, Li FX, Guo WJ, Hong P, Weng YQ, et al. Macrophage-NLRP3 inflammasome activation exacerbates cardiac dysfunction after ischemic stroke in a mouse model of diabetes. Neurosci Bull 2020, 36: 1035–1045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhou R, Yazdi AS, Menu P, Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature 2011, 469: 221–225.

    Article  ADS  CAS  PubMed  Google Scholar 

  74. Swanson KV, Deng M, Ting JPY. The NLRP3 inflammasome: Molecular activation and regulation to therapeutics. Nat Rev Immunol 2019, 19: 477–489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 2015, 526: 660–665.

    Article  ADS  CAS  PubMed  Google Scholar 

  76. Reikine S, Nguyen JB, Modis Y. Pattern recognition and signaling mechanisms of RIG-I and MDA5. Front Immunol 2014, 5: 342.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Seth RB, Sun L, Ea CK, Chen ZJ. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 2005, 122: 669–682.

    Article  CAS  PubMed  Google Scholar 

  78. Belgnaoui SM, Paz S, Hiscott J. Orchestrating the interferon antiviral response through the mitochondrial antiviral signaling (MAVS) adapter. Curr Opin Immunol 2011, 23: 564–572.

    Article  CAS  PubMed  Google Scholar 

  79. Dixit E, Boulant S, Zhang Y, Lee ASY, Odendall C, Shum B, et al. Peroxisomes are signaling platforms for antiviral innate immunity. Cell 2010, 141: 668–681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Odendall C, Dixit E, Stavru F, Bierne H, Franz KM, Durbin AF, et al. Diverse intracellular pathogens activate type III interferon expression from peroxisomes. Nat Immunol 2014, 15: 717–726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Camões F, Bonekamp NA, Delille HK, Schrader M. Organelle dynamics and dysfunction: A closer link between peroxisomes and mitochondria. J Inher Metab Disea 2009, 32: 163–180.

    Article  Google Scholar 

  82. Ishikawa H, Barber GN. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 2008, 455: 674–678.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  83. Koshiba T. Mitochondrial-mediated antiviral immunity. Biochim Biophys Acta 2013, 1833: 225–232.

    Google Scholar 

  84. Tur J, Vico T, Lloberas J, Zorzano A, Celada A. Macrophages and mitochondria: A critical interplay between metabolism, signaling, and the functional activity. Adv Immunol 2017, 133: 1–36.

    Article  CAS  PubMed  Google Scholar 

  85. Zhang Y, Li Y, Fu X, Wang P, Wang Q, Meng W, et al. The detrimental and beneficial functions of macrophages after cochlear injury. Front Cell Dev Biol 2021, 9: 631904.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Zhang Y, Fu X, Li Y, Li W, Hong G, Guo S, et al. Macrophage-mediated immune response aggravates hearing disfunction caused by the disorder of mitochondrial dynamics in cochlear hair cells. Hum Mol Genet 2023, 32: 1137–1151.

    Article  CAS  PubMed  Google Scholar 

  87. Liu W, Molnar M, Garnham C, Benav H, Rask-Andersen H. Macrophages in the human cochlea: Saviors or predators-a study using super-resolution immunohistochemistry. Front Immunol 2018, 9: 223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. He W, Yu J, Sun Y, Kong W. Macrophages in noise-exposed cochlea: Changes, regulation and the potential role. Aging Dis 2020, 11: 191–199.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Yang W, Vethanayagam RR, Dong Y, Cai Q, Hu BH. Activation of the antigen presentation function of mononuclear phagocyte populations associated with the basilar membrane of the cochlea after acoustic overstimulation. Neuroscience 2015, 303: 1–15.

    Article  CAS  PubMed  Google Scholar 

  90. Kaur T, Zamani D, Tong L, Rubel EW, Ohlemiller KK, Hirose K, et al. Fractalkine signaling regulates macrophage recruitment into the cochlea and promotes the survival of spiral ganglion neurons after selective hair cell lesion. J Neurosci 2015, 35: 15050–15061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kaur T, Ohlemiller KK, Warchol ME. Genetic disruption of fractalkine signaling leads to enhanced loss of cochlear afferents following ototoxic or acoustic injury. J Comp Neurol 2018, 526: 824–835.

    Article  CAS  PubMed  Google Scholar 

  92. Hirose K, Rutherford MA, Warchol ME. Two cell populations participate in clearance of damaged hair cells from the sensory epithelia of the inner ear. Hear Res 2017, 352: 70–81.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Fredelius L, Rask-Andersen H. The role of macrophages in the disposal of degeneration products within the organ of corti after acoustic overstimulation. Acta Otolaryngol 1990, 109: 76–82.

    Article  CAS  PubMed  Google Scholar 

  94. Silverstein RL, Febbraio M. CD36, a scavenger receptor involved in immunity, metabolism, angiogenesis, and behavior. Sci Signal 2009, 2: re3.

  95. Fujioka M, Kanzaki S, Okano HJ, Masuda M, Ogawa K, Okano H. Proinflammatory cytokines expression in noise-induced damaged cochlea. J Neurosci Res 2006, 83: 575–583.

    Article  CAS  PubMed  Google Scholar 

  96. Cai Q, Cai Q, Yang S, Bard J, Jamison J, Cartwright D, et al. Molecular profile of cochlear immunity in the resident cells of the organ of Corti. J Neuroinflammation 2014, 11: 173.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Hashimoto S, Billings P, Harris JP, Firestein GS, Keithley EM. Innate immunity contributes to cochlear adaptive immune responses. Audiol Neurootol 2005, 10: 35–43.

    Article  PubMed  Google Scholar 

  98. Miyao M, Firestein GS, Keithley EM. Acoustic trauma augments the cochlear immune response to antigen. Laryngoscope 2008, 118: 1801–1808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hu BH, Zhang C, Frye MD. Immune cells and non-immune cells with immune function in mammalian cochleae. Hear Res 2018, 362: 14–24.

    Article  CAS  PubMed  Google Scholar 

  100. Rai V, Wood MB, Feng H, Schabla NM, Tu S, Zuo J. The immune response after noise damage in the cochlea is characterized by a heterogeneous mix of adaptive and innate immune cells. Sci Rep 2020, 10: 15167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhou H, Qian X, Xu N, Zhang S, Zhu G, Zhang Y, et al. Disruption of Atg7-dependent autophagy causes electromotility disturbances, outer hair cell loss, and deafness in mice. Cell Death Dis 2020, 11: 913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. He ZH, Zou SY, Li M, Liao FL, Wu X, Sun HY, et al. The nuclear transcription factor FoxG1 affects the sensitivity of mimetic aging hair cells to inflammation by regulating autophagy pathways. Redox Biol 2020, 28: 101364.

    Article  CAS  PubMed  Google Scholar 

  103. Wang J, Ye C, Chen C, Xiong H, Xie B, Zhou J, et al. Glucose transporter GLUT1 expression and clinical outcome in solid tumors: A systematic review and meta-analysis. Oncotarget 2017, 8: 16875–16886.

    Article  PubMed  PubMed Central  Google Scholar 

  104. He ZH, Li M, Fang QJ, Liao FL, Zou SY, Wu X, et al. FOXG1 promotes aging inner ear hair cell survival through activation of the autophagy pathway. Autophagy 2021, 17: 4341–4362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ding Y, Meng W, Kong W, He Z, Chai R. The role of FoxG1 in the inner ear. Front Cell Dev Biol 2020, 8: 614954.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Liu W, Danckwardt-Lillieström N, Schrott-Fischer A, Glueckert R, Rask-Andersen H. Distribution of immune cells including macrophages in the human cochlea. Front Neurol 2021, 12: 781702.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Frye MD, Yang W, Zhang C, Xiong B, Hu BH. Dynamic activation of basilar membrane macrophages in response to chronic sensory cell degeneration in aging mouse cochleae. Hear Res 2017, 344: 125–134.

    Article  PubMed  Google Scholar 

  108. Hirose K. Lateral wall histopathology and endocochlear potential in the noise-damaged mouse cochlea. J Assoc Res Otolaryngol 2003, 4: 339–352.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Shi X. Resident macrophages in the cochlear blood-labyrinth barrier and their renewal via migration of bone-marrow-derived cells. Cell Tissue Res 2010, 342: 21–30.

    Article  PubMed  Google Scholar 

  110. Zhang W, Dai M, Fridberger A, Hassan A, Degagne J, Neng L, et al. Perivascular-resident macrophage-like melanocytes in the inner ear are essential for the integrity of the intrastrial fluid-blood barrier. Proc Natl Acad Sci U S A 2012, 109: 10388–10393.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  111. Neng L, Zhang J, Yang J, Zhang F, Lopez IA, Dong M, et al. Structural changes in thestrial blood-labyrinth barrier of aged C57BL/6 mice. Cell Tissue Res 2015, 361: 685–696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hirose K, Discolo CM, Keasler JR, Ransohoff R. Mononuclear phagocytes migrate into the murine cochlea after acoustic trauma. J Comp Neurol 2005, 489: 180–194.

    Article  PubMed  Google Scholar 

  113. Dong Y, Zhang C, Frye M, Yang W, Ding D, Sharma A, et al. Differential fates of tissue macrophages in the cochlea during postnatal development. Hear Res 2018, 365: 110–126.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Fu X, Wan P, Li P, Wang J, Guo S, Zhang Y, et al. Mechanism and prevention of ototoxicity induced by aminoglycosides. Front Cell Neurosci 2021, 15: 692762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Li P, Liu Z, Wang J, Bi X, Xiao Y, Qiao R, et al. Gstm1/Gstt1 is essential for reducing cisplatin ototoxicity in CBA/CaJ mice. FASEB J 2022, 36: e22373.

    Article  CAS  PubMed  Google Scholar 

  116. Beutler BA. The role of tumor necrosis factor in health and disease. J Rheumatol Suppl 1999, 57: 16–21.

    CAS  PubMed  Google Scholar 

  117. Nishimoto N, Kishimoto T. Inhibition of IL-6 for the treatment of inflammatory diseases. Curr Opin Pharmacol 2004, 4: 386–391.

    Article  CAS  PubMed  Google Scholar 

  118. Duque GA, Descoteaux A. Macrophage cytokines: Involvement in immunity and infectious diseases. Front Immunol 2014, 5: 491.

    Google Scholar 

  119. Shin SA, Lyu AR, Jeong SH, Kim TH, Park MJ, Park YH. Acoustic trauma modulates cochlear blood flow and vasoactive factors in a rodent model of noise-induced hearing loss. Int J Mol Sci 2019, 20: 5316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. So H, Kim H, Lee JH, Park C, Kim Y, Kim E, et al. Cisplatin cytotoxicity of auditory cells requires secretions of proinflammatory cytokines via activation of ERK and NF-kappaB. J Assoc Res Otolaryngol 2007, 8: 338–355.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Kim HJ, Oh GS, Lee JH, Lyu AR, Ji HM, Lee SH, et al. Cisplatin ototoxicity involves cytokines and STAT6 signaling network. Cell Res 2011, 21: 944–956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Tornabene SV, Sato K, Pham L, Billings P, Keithley EM. Immune cell recruitment following acoustic trauma. Hear Res 2006, 222: 115–124.

    Article  CAS  PubMed  Google Scholar 

  123. Seidman MD, Tang W, Shirwany N, Bai U, Rubin CJ, Henig JP, et al. Anti-intercellular adhesion molecule-1 antibody’s effect on noise damage. Laryngoscope 2009, 119: 707–712.

    Article  CAS  PubMed  Google Scholar 

  124. Hermand P, Pincet F, Carvalho S, Ansanay H, Trinquet E, Daoudi M, et al. Functional adhesiveness of the CX3CL1 chemokine requires its aggregation. Role of the transmembrane domain. J Biol Chem 2008, 283: 30225–30234.

  125. Sato E, Ransohoff RM, Hirose K. Expression of fractalkine receptor CX3CR1 on cochlear macrophages influences survival of hair cells following ototoxic injury. JARO 2010, 11: 223–234.

    Article  PubMed  Google Scholar 

  126. Kaur T, Clayman AC, Nash AJ, Schrader AD, Warchol ME, Ohlemiller KK. Lack of fractalkine receptor on macrophages impairs spontaneous recovery of ribbon synapses after moderate noise trauma in C57BL/6 mice. Front Neurosci 2019, 13: 620.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Wang SK, Xue Y, Rana P, Hong CM, Cepko CL. Soluble CX3CL1 gene therapy improves cone survival and function in mouse models of retinitis pigmentosa. Proc Natl Acad Sci U S A 2019, 116: 10140–10149.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  128. Stothert AR, Kaur T. Innate immunity to spiral ganglion neuron loss: A neuroprotective role of fractalkine signaling in injured cochlea. Front Cell Neurosci 2021, 15: 694292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Noble KV, Liu T, Matthews LJ, Schulte BA, Lang H. Age-related changes in immune cells of the human cochlea. Front Neurol 2019, 10: 895.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Seicol BJ, Lin S, Xie R. Age-related hearing loss is accompanied by chronic inflammation in the cochlea and the cochlear nucleus. Front Aging Neurosci 2022, 14: 846804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Noble K, Brown L, Elvis P, Lang H. Cochlear immune response in presbyacusis: A focus on dysregulation of macrophage activity. J Assoc Res Otolaryngol 2022, 23: 1–16.

    Article  PubMed  Google Scholar 

  132. Shigemoto-Mogami Y, Hoshikawa K, Sato K. Activated microglia disrupt the blood-brain barrier and induce chemokines and cytokines in a rat in vitro model. Front Cell Neurosci 2018, 12: 494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 2012, 74: 691–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Murphy MP, Hartley RC. Mitochondria as a therapeutic target for common pathologies. Nat Rev Drug Discov 2018, 17: 865–886.

    Article  CAS  PubMed  Google Scholar 

  135. Andreux PA, Houtkooper RH, Auwerx J. Pharmacological approaches to restore mitochondrial function. Nat Rev Drug Discov 2013, 12: 465–483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Li Y, Li YC, Liu XT, Zhang L, Chen YH, Zhao Q, et al. Blockage of citrate export prevents TCA cycle fragmentation via Irg1 inactivation. Cell Rep 2022, 38: 110391.

    Article  CAS  PubMed  Google Scholar 

  137. Fu X, Li P, Zhang L, Song Y, An Y, Zhang A, et al. Activation of Rictor/mTORC2 signaling acts as a pivotal strategy to protect against sensorineural hearing loss. Proc Natl Acad Sci U S A 2022, 119: e2107357119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Martina JA, Puertollano R. The IRG1/itaconate/TFEB axis: A new weapon in macrophage antibacterial defense. Mol Cell 2022, 82: 2732–2734.

    Article  CAS  PubMed  Google Scholar 

  139. Zhang L, Tian L, Dai X, Yu H, Wang J, Lei A, et al. Pluripotent stem cell-derived CAR-macrophage cells with antigen-dependent anti-cancer cell functions. J Hematol Oncol 2020, 13: 153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Takata K, Kozaki T, Lee CZW, Thion MS, Otsuka M, Lim S, et al. Induced-pluripotent-stem-cell-derived primitive macrophages provide a platform for modeling tissue-resident macrophage differentiation and function. Immunity 2020, 52: 417–418.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This review was supported by the China Postdoctoral Science Foundation (2022M712892) and the Joint project Henan Province Medical Science and Technology Project (LHGJ20210297).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qi Feng or Peipei Li.

Ethics declarations

Conflict of interest

All authors claim that there are no conflicts of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Ye, F., Fu, X. et al. Mitochondrial Regulation of Macrophages in Innate Immunity and Diverse Roles of Macrophages During Cochlear Inflammation. Neurosci. Bull. 40, 255–267 (2024). https://doi.org/10.1007/s12264-023-01085-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-023-01085-y

Keywords

Navigation