Skip to main content
Log in

Activation of Dopamine D2 Receptors Alleviates Neuronal Hyperexcitability in the Lateral Entorhinal Cortex via Inhibition of HCN Current in a Rat Model of Chronic Inflammatory Pain

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Functional changes in synaptic transmission from the lateral entorhinal cortex to the dentate gyrus (LEC-DG) are considered responsible for the chronification of pain. However, the underlying alterations in fan cells, which are the predominant neurons in the LEC that project to the DG, remain elusive. Here, we investigated possible mechanisms using a rat model of complete Freund’s adjuvant (CFA)-induced inflammatory pain. We found a substantial increase in hyperpolarization-activated/cyclic nucleotide-gated currents (Ih), which led to the hyperexcitability of LEC fan cells of CFA slices. This phenomenon was attenuated in CFA slices by activating dopamine D2, but not D1, receptors. Chemogenetic activation of the ventral tegmental area -LEC projection had a D2 receptor-dependent analgesic effect. Intra-LEC microinjection of a D2 receptor agonist also suppressed CFA-induced behavioral hypersensitivity, and this effect was attenuated by pre-activation of the Ih. Our findings suggest that down-regulating the excitability of LEC fan cells through activation of the dopamine D2 receptor may be a strategy for treating chronic inflammatory pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhang Y, Liu FY, Liao FF, Wan Y, Yi M. Exacerbation of tonic but not phasic pain by entorhinal cortex lesions. Neurosci Lett 2014, 581: 137–142.

    Article  CAS  PubMed  Google Scholar 

  2. Boccella S, Cristiano C, Romano R, Iannotta M, Belardo C, Farina A. Ultra-micronized palmitoylethanolamide rescues the cognitive decline-associated loss of neural plasticity in the neuropathic mouse entorhinal cortex-dentate gyrus pathway. Neurobiol Dis 2019, 121: 106–119.

    Article  CAS  PubMed  Google Scholar 

  3. Bush D, Barry C, Burgess N. What do grid cells contribute to place cell firing? Trends Neurosci 2014, 37: 136–145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Liu MG, Lu D, Wang Y, Chen XF, Li Z, Xu Y, et al. Counteracting roles of metabotropic glutamate receptor subtypes 1 and 5 in regulation of pain-related spatial and temporal synaptic plasticity in rat entorhinal-hippocampal pathways. Neurosci Lett 2012, 507: 38–42.

    Article  CAS  PubMed  Google Scholar 

  5. Malheiros JM, Guinsburg R, Covolan L. Cortical modulation of pain: Comments on “Exacerbation of tonic but not phasic pain by entorhinal cortex lesions.” Neurosci Lett 2014, 581: 135–136.

    Article  CAS  PubMed  Google Scholar 

  6. Tahvildari B, Alonso A. Morphological and electrophysiological properties of lateral entorhinal cortex layers II and III principal neurons. J Comp Neurol 2005, 491: 123–140.

    Article  PubMed  Google Scholar 

  7. Notomi T, Shigemoto R. Immunohistochemical localization of Ih channel subunits, HCN1–4, in the rat brain. J Comp Neurol 2004, 471: 241–276.

    Article  CAS  PubMed  Google Scholar 

  8. Gao SH, Wen HZ, Shen LL, Zhao YD, Ruan HZ. Activation of mGluR1 contributes to neuronal hyperexcitability in the rat anterior cingulate cortex via inhibition of HCN channels. Neuropharmacology 2016, 105: 361–377.

    Article  CAS  PubMed  Google Scholar 

  9. Koga K, Descalzi G, Chen T, Ko HG, Lu JS, Li S, et al. Coexistence of two forms of LTP in ACC provides a synaptic mechanism for the interactions between anxiety and chronic pain. Neuron 2015, 86: 1109.

    Article  CAS  PubMed  Google Scholar 

  10. Santello M, Nevian T. Dysfunction of cortical dendritic integration in neuropathic pain reversed by serotoninergic neuromodulation. Neuron 2015, 86: 233–246.

    Article  CAS  PubMed  Google Scholar 

  11. Cordeiro Matos S, Zhang ZZ, Séguéla P. Peripheral neuropathy induces HCN channel dysfunction in pyramidal neurons of the medial prefrontal cortex. J Neurosci 2015, 35: 13244–13256.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Nolan MF, Dudman JT, Dodson PD, Santoro B. HCN1 channels control resting and active integrative properties of stellate cells from layer II of the entorhinal cortex. J Neurosci 2007, 27: 12440–12451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fransén E, Alonso AA, Dickson CT, Magistretti J, Hasselmo ME. Ionic mechanisms in the generation of subthreshold oscillations and action potential clustering in entorhinal layer II stellate neurons. Hippocampus 2004, 14: 368–384.

    Article  PubMed  CAS  Google Scholar 

  14. He C, Chen F, Li B, Hu ZA. Neurophysiology of HCN channels: From cellular functions to multiple regulations. Prog Neurobiol 2014, 112: 1–23.

    Article  CAS  PubMed  Google Scholar 

  15. Ozaki S, Narita M, Narita M, Iino M, Sugita J, Matsumura Y, et al. Suppression of the morphine-induced rewarding effect in the rat with neuropathic pain: Implication of the reduction in mu-opioid receptor functions in the ventral tegmental area. J Neurochem 2002, 82: 1192–1198.

    Article  CAS  PubMed  Google Scholar 

  16. Taylor AMW, Murphy NP, Evans CJ, Cahill CM. Correlation between ventral striatal catecholamine content and nociceptive thresholds in neuropathic mice. J Pain 2014, 15: 878–885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Serafini RA, Pryce KD, Zachariou V. The mesolimbic dopamine system in chronic pain and associated affective comorbidities. Biol Psychiatry 2020, 87: 64–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Thompson JM, Neugebauer V. Cortico-limbic pain mechanisms. Neurosci Lett 2019, 702: 15–23.

    Article  CAS  PubMed  Google Scholar 

  19. Baliki MN, Petre B, Torbey S, Herrmann KM, Huang LJ, Schnitzer TJ, et al. Corticostriatal functional connectivity predicts transition to chronic back pain. Nat Neurosci 2012, 15: 1117–1119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee M, Manders TR, Eberle SE, Su C, D’Amour J, Yang RT, et al. Activation of corticostriatal circuitry relieves chronic neuropathic pain. J Neurosci 2015, 35: 5247–5259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang HR, Hu SW, Zhang S, Song Y, Wang XY, Wang L, et al. KCNQ channels in the mesolimbic reward circuit regulate nociception in chronic pain in mice. Neurosci Bull 2021, 37: 597–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Glovaci I, Chapman CA. Dopamine induces release of calcium from internal stores in layer II lateral entorhinal cortex fan cells. Cell Calcium 2019, 80: 103–111.

    Article  CAS  PubMed  Google Scholar 

  23. Corder G, Doolen S, Donahue RR, Winter MK, Jutras BL, He Y, et al. Constitutive μ-opioid receptor activity leads to long-term endogenous analgesia and dependence. Science 2013, 341: 1394–1399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pan ZQ, Zhu LJ, Li YQ, Hao LY, Yin C, Yang JX, et al. Epigenetic modification of spinal miR-219 expression regulates chronic inflammation pain by targeting CaMKIIγ. J Neurosci 2014, 34: 9476–9483.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Scheff NN, Gold MS. Trafficking of Na+/Ca2+ exchanger to the site of persistent inflammation in nociceptive afferents. J Neurosci 2015, 35: 8423–8432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. de Castro Costa M, de Sutter P, Gybels J, van Hees J. Adjuvant-induced arthritis in rats: A possible animal model of chronic pain. Pain 1981, 10: 173–185.

    Article  Google Scholar 

  27. Marcantoni A, Raymond EF, Carbone E, Marie H. Firing properties of entorhinal cortex neurons and early alterations in an Alzheimer’s disease transgenic model. Pflugers Arch 2014, 466: 1437–1450.

    Article  CAS  PubMed  Google Scholar 

  28. Gao SH, Shen LL, Wen HZ, Zhao YD, Ruan HZ. Inhibition of metabotropic glutamate receptor subtype 1 alters the excitability of the commissural pyramidal neuron in the rat anterior cingulate cortex after chronic constriction injury to the sciatic nerve. Anesthesiology 2017, 127: 515–533.

    Article  CAS  PubMed  Google Scholar 

  29. Simkin D, Hattori S, Ybarra N, Musial TF, Buss EW, Richter H, et al. Aging-related hyperexcitability in CA3 pyramidal neurons is mediated by enhanced A-type K+ channel function and expression. J Neurosci 2015, 35: 13206–13218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. van Aerde KI, Feldmeyer D. Morphological and physiological characterization of pyramidal neuron subtypes in rat medial prefrontal cortex. Cereb Cortex 2015, 25: 788–805.

    Article  PubMed  Google Scholar 

  31. Ionov ID, Pushinskaya II, Gorev NP, Frenkel DD. Antidepressants upregulate c-Fos expression in the lateral entorhinal cortex and hippocampal dorsal subiculum: Study in rats. Brain Res Bull 2019, 153: 102–108.

    Article  CAS  PubMed  Google Scholar 

  32. Paxinos G, Watson C. The rat brain in stereotaxic coordinates. Academic, New York, 1998.

    Google Scholar 

  33. Gao SH, Shen LL, Wen HZ, Zhao YD, Chen PH, Ruan HZ. The projections from the anterior cingulate cortex to the nucleus accumbens and ventral tegmental area contribute to neuropathic pain-evoked aversion in rats. Neurobiol Dis 2020, 140: 104862.

    Article  CAS  PubMed  Google Scholar 

  34. Hargreaves K, Dubner R, Brown F, Flores C, Joris J. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 1988, 32: 77–88.

    Article  CAS  PubMed  Google Scholar 

  35. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL. Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 1994, 53: 55–63.

    Article  CAS  PubMed  Google Scholar 

  36. Kimm T, Khaliq ZM, Bean BP. Differential regulation of action potential shape and burst-frequency firing by BK and Kv2 channels in substantia nigra dopaminergic neurons. J Neurosci 2015, 35: 16404–16417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Missale C, Nash SR, Robinson SW, Jaber M, Caron MG. Dopamine receptors: From structure to function. Physiol Rev 1998, 78: 189–225.

    Article  CAS  PubMed  Google Scholar 

  38. Mishra A, Singh S, Shukla S. Physiological and functional basis of dopamine receptors and their role in neurogenesis: Possible implication for Parkinson’s disease. J Exp Neurosci 2018, 12: 1179069518779829.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Li B, Chen F, Ye JN, Chen XW, Yan J, Li Y, et al. The modulation of orexin A on HCN currents of pyramidal neurons in mouse prelimbic cortex. Cereb Cortex 2010, 20: 1756–1767.

    Article  PubMed  Google Scholar 

  40. Borsook D, Linnman C, Faria V, Strassman AM, Becerra L, Elman I. Reward deficiency and anti-reward in pain chronification. Neurosci Biobehav Rev 2016, 68: 282–297.

    Article  CAS  PubMed  Google Scholar 

  41. Boccella S, Guida F, Iannotta M, Iannotti FA, Infantino R, Ricciardi F, et al. 2-Pentadecyl-2-oxazoline ameliorates memory impairment and depression-like behaviour in neuropathic mice: Possible role of adrenergic alpha2- and H3 histamine autoreceptors. Mol Brain 2021, 14: 28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chung G, Kim CY, Yun YC, Yoon SH, Kim MH, Kim YK, et al. Upregulation of prefrontal metabotropic glutamate receptor 5 mediates neuropathic pain and negative mood symptoms after spinal nerve injury in rats. Sci Rep 2017, 7: 9743.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Brown JT, Chin J, Leiser SC, Pangalos MN, Randall AD. Altered intrinsic neuronal excitability and reduced Na+ currents in a mouse model of Alzheimer’s disease. Neurobiol Aging 2011, 32: 2109.e1-2109.14.

    Article  CAS  Google Scholar 

  44. Alonso A, Klink R. Differential electroresponsiveness of stellate and pyramidal-like cells of medial entorhinal cortex layer II. J Neurophysiol 1993, 70: 128–143.

    Article  CAS  PubMed  Google Scholar 

  45. Dickson CT, Magistretti J, Shalinsky MH, Fransén E, Hasselmo ME, Alonso A. Properties and role of Ih in the pacing of subthreshold oscillations in entorhinal cortex layer II neurons. J Neurophysiol 2000, 83: 2562–2579.

    Article  CAS  PubMed  Google Scholar 

  46. Wang X, Lambert NA. Membrane properties of identified lateral and medial perforant pathway projection neurons. Neuroscience 2003, 117: 485–492.

    Article  CAS  PubMed  Google Scholar 

  47. Solomon JS, Nerbonne JM. Two kinetically distinct components of hyperpolarization-activated current in rat superior colliculus-projecting neurons. J Physiol 1993, 469: 291–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yang S, Boudier-Revéret M, Choo YJ, Chang MC. Association between chronic pain and alterations in the mesolimbic dopaminergic system. Brain Sci 2020, 10: 701.

    Article  CAS  PubMed Central  Google Scholar 

  49. Huang S, Zhang ZZ, Gambeta E, Xu SC, Thomas C, Godfrey N, et al. Dopamine inputs from the ventral tegmental area into the medial prefrontal cortex modulate neuropathic pain-associated behaviors in mice. Cell Rep 2020, 31: 107812.

    Article  CAS  PubMed  Google Scholar 

  50. Glovaci I, Caruana DA, Chapman CA. Dopaminergic enhancement of excitatory synaptic transmission in layer II entorhinal neurons is dependent on D1-like receptor-mediated signaling. Neuroscience 2014, 258: 74–83.

    Article  CAS  PubMed  Google Scholar 

  51. Caruana DA, Sorge RE, Stewart J, Chapman CA. Dopamine has bidirectional effects on synaptic responses to cortical inputs in layer II of the lateral entorhinal cortex. J Neurophysiol 2006, 96: 3006–3015.

    Article  PubMed  Google Scholar 

  52. Hutter JA, Martel A, Trigiani L, Barrett SG, Chapman CA. Rewarding stimulation of the lateral hypothalamus induces a dopamine-dependent suppression of synaptic responses in the entorhinal cortex. Behav Brain Res 2013, 252: 266–274.

    Article  CAS  PubMed  Google Scholar 

  53. Liu K, Steketee JD. The role of adenylyl cyclase in the medial prefrontal cortex in cocaine-induced behavioral sensitization in rats. Neuropharmacology 2016, 111: 70–77.

    Article  CAS  PubMed  Google Scholar 

  54. Vortherms TA, Nguyen CH, Bastepe M, Jüppner H, Watts VJ. D2 dopamine receptor-induced sensitization of adenylyl cyclase type 1 is Gαs independent. Neuropharmacology 2006, 50: 576–584.

    Article  CAS  PubMed  Google Scholar 

  55. Quintana C, Beaulieu JM. A fresh look at cortical dopamine D2 receptor expressing neurons. Pharmacol Res 2019, 139: 440–445.

    Article  CAS  PubMed  Google Scholar 

  56. He C, Luo FL, Chen XS, Chen F, Li C, Ren SC, et al. Superficial layer-specific histaminergic modulation of medial entorhinal cortex required for spatial learning. Cereb Cortex 2016, 26: 1590–1608.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81901119 and 81901142), Special Project on Innovation and Generation of Medical Support Capacity, and the Natural Science Foundation of Tibet (XZ2019ZRG-119), China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin-Lin Shen or Chang-Yue Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Shi-Hao Gao and Yong Tao contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, SH., Tao, Y., Zhu, Y. et al. Activation of Dopamine D2 Receptors Alleviates Neuronal Hyperexcitability in the Lateral Entorhinal Cortex via Inhibition of HCN Current in a Rat Model of Chronic Inflammatory Pain. Neurosci. Bull. 38, 1041–1056 (2022). https://doi.org/10.1007/s12264-022-00892-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-022-00892-z

Keywords

Navigation