Skip to main content
Log in

Targeting 5-HT as a Potential Treatment for Social Deficits in Autism

  • Insight
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Zhou H, Xu X, Yan WL, Zou XB, Wu LJ, Luo XR. Prevalence of autism spectrum disorder in China: A nationwide multi-center population-based study among children aged 6 to 12 years. Neurosci Bull 2020, 36: 961–971.

    Article  Google Scholar 

  2. Hodges H, Fealko C, Soares N. Autism spectrum disorder: Definition, epidemiology, causes, and clinical evaluation. Transl Pediatr 2020, 9: S55–S65.

    Article  Google Scholar 

  3. Vorstman JAS, Parr JR, Moreno-De-Luca D, Anney RJL, Nurnberger Jr JI, Hallmayer JF. Autism genetics: Opportunities and challenges for clinical translation. Nat Rev Genet 2017, 18: 362–376.

    Article  CAS  Google Scholar 

  4. Andersson M, Tangen Ä, Farde L, Bölte S, Halldin C, Borg J, et al. Serotonin transporter availability in adults with autism-a positron emission tomography study. Mol Psychiatry 2021, 26: 1647–1658.

    Article  CAS  Google Scholar 

  5. Schain RJ, Freedman DX. Studies on 5-hydroxyindole metabolism in autistic and other mentally retarded children. J Pediatr 1961, 58: 315–320.

    Article  CAS  Google Scholar 

  6. Lew CH, Groeniger KM, Hanson KL, Cuevas D, Greiner DMZ, Hrvoj-Mihic B, et al. Serotonergic innervation of the amygdala is increased in autism spectrum disorder and decreased in Williams syndrome. Mol Autism 2020, 11: 12.

    Article  CAS  Google Scholar 

  7. Cheung A, Matsui A, Abe M, Sakimura K, Sasaoka T, Uemura T, et al. Neurexins in serotonergic neurons regulate serotonin transmission and complex mouse behaviors. bioRxiv 2021, https://doi.org/10.1101/2021.12.09.471904.

  8. Ye R, Quinlan MA, Iwamoto H, Wu HH, Green NH, Jetter CS, et al. Physical interactions and functional relationships of neuroligin 2 and midbrain serotonin transporters. Front Synaptic Neurosci 2016, 7: 20.

    Article  CAS  Google Scholar 

  9. Südhof TC. Neuroligins and neurexins link synaptic function to cognitive disease. Nature 2008, 455: 903–911.

    Article  CAS  Google Scholar 

  10. Trobiani L, Meringolo M, Diamanti T, Bourne Y, Marchot P, Martella G, et al. The neuroligins and the synaptic pathway in autism spectrum disorder. Neurosci Biobehav Rev 2020, 119: 37–51.

    Article  CAS  Google Scholar 

  11. Kane MJ, Angoa-Peréz M, Briggs DI, Sykes CE, Francescutti DM, Rosenberg DR, et al. Mice genetically depleted of brain serotonin display social impairments, communication deficits and repetitive behaviors: Possible relevance to autism. PLoS One 2012, 7: e48975.

    Article  CAS  Google Scholar 

  12. Dölen G, Darvishzadeh A, Huang KW, Malenka RC. Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin. Nature 2013, 501: 179–184.

    Article  CAS  Google Scholar 

  13. Yao Y, Gao G, Liu K, Shi X, Cheng MX, Xiong Y, et al. Projections from D2 neurons in different subregions of nucleus accumbens shell to ventral pallidum play distinct roles in reward and aversion. Neurosci Bull 2021, 37: 623–640.

    Article  CAS  Google Scholar 

  14. Walsh JJ, Christoffel DJ, Heifets BD, Ben-Dor GA, Selimbeyoglu A, Hung LW, et al. 5-HT release in nucleus accumbens rescues social deficits in mouse autism model. Nature 2018, 560: 589–594.

    Article  CAS  Google Scholar 

  15. Wu XT, Morishita W, Beier KT, Heifets BD, Malenka RC. 5-HT modulation of a medial septal circuit tunes social memory stability. Nature 2021, 599: 96–101.

    Article  CAS  Google Scholar 

  16. Xia QQ, Xu J, Liao TL, Yu J, Shi L, Xia J, et al. Neuroligins differentially mediate subtype-specific synapse formation in pyramidal neurons and interneurons. Neurosci Bull 2019, 35: 497–506.

    Article  CAS  Google Scholar 

  17. Walsh JJ, Llorach P, Cardozo Pinto DF, Wenderski W, Christoffel DJ, Salgado JS, et al. Systemic enhancement of serotonin signaling reverses social deficits in multiple mouse models for ASD. Neuropsychopharmacology 2021, 46: 2000–2010.

    Article  CAS  Google Scholar 

  18. Nautiyal KM, Tanaka KF, Barr MM, Tritschler L, le Dantec Y, David DJ, et al. Distinct circuits underlie the effects of 5-HT1B receptors on aggression and impulsivity. Neuron 2015, 86: 813–826.

    Article  CAS  Google Scholar 

  19. Pobbe RLH, Zangrossi H Jr, Blanchard DC, Blanchard RJ. Involvement of dorsal raphe nucleus and dorsal periaqueductal gray 5-HT receptors in the modulation of mouse defensive behaviors. Eur Neuropsychopharmacol 2011, 21: 306–315.

    Article  CAS  Google Scholar 

  20. Avery MC, Krichmar JL. Neuromodulatory systems and their interactions: A review of models, theories, and experiments. Front Neural Circuits 2017, 11: 108.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This Insight article was supported by grants from the Key-Area Research and Development Program of Guangdong Province (2019B030335001), the National Natural Science Foundation of China (32000690), and the National Social Science Foundation of China (20&ZD296).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun Hu.

Ethics declarations

Conflict of interest

All authors claim that there are no conflicts of interest.

Additional information

Guangyi Yang and Hongyan Geng have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, G., Geng, H. & Hu, C. Targeting 5-HT as a Potential Treatment for Social Deficits in Autism. Neurosci. Bull. 38, 1263–1266 (2022). https://doi.org/10.1007/s12264-022-00876-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-022-00876-z

Navigation