Skip to main content

Advertisement

Log in

Advances in the Immunotherapeutic Potential of Isocitrate Dehydrogenase Mutations in Glioma

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Isocitrate dehydrogenase (IDH) is an essential metabolic enzyme in the tricarboxylic acid cycle (TAC). The high mutation frequency of the IDH gene plays a complicated role in gliomas. In addition to affecting gliomas directly, mutations in IDH can also alter their immune microenvironment and can change immune-cell function in direct and indirect ways. IDH mutations mediate immune-cell infiltration and function by modulating immune-checkpoint gene expression and chemokine secretion. In addition, IDH mutation-derived D2-hydroxyglutarate can be absorbed by surrounding immune cells, also affecting their functioning. In this review, we summarize current knowledge about the effects of IDH mutations as well as other gene mutations on the immune microenvironment of gliomas. We also describe recent preclinical and clinical data related to IDH-mutant inhibitors for the treatment of gliomas. Finally, we discuss different types of immunotherapy and the immunotherapeutic potential of IDH mutations in gliomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Gravendeel LAM, Kouwenhoven MCM, Gevaert O, de Rooi JJ, Stubbs AP, Duijm JE. Intrinsic gene expression profiles of gliomas are a better predictor of survival than histology. Cancer Res 2009, 69: 9065–9072.

    Article  CAS  PubMed  Google Scholar 

  2. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 2007, 114: 97–109.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cerami E, Gao JJ, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov 2012, 2: 401–404.

    Article  PubMed  Google Scholar 

  4. Eskilsson E, Røsland GV, Solecki G, Wang QH, Harter PN, Graziani G, et al. EGFR heterogeneity and implications for therapeutic intervention in glioblastoma. Neuro-oncology 2018, 20: 743–752.

    Article  CAS  PubMed  Google Scholar 

  5. Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim SH, et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell 2011, 19: 17–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bunse L, Pusch S, Bunse T, Sahm F, Sanghvi K, Friedrich M, et al. Suppression of antitumor T cell immunity by the oncometabolite (R)-2-hydroxyglutarate. Nat Med 2018, 24: 1192–1203.

    Article  CAS  PubMed  Google Scholar 

  7. Chen PW, Zhao D, Li J, Liang X, Li JX, Chang A, et al. Symbiotic macrophage-glioma cell interactions reveal synthetic lethality in PTEN-null glioma. Cancer Cell 2019, 35: 868–884.e6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Ma JH, Benitez JA, Li J, Miki S, de Albuquerque CP, Galatro T, et al. Inhibition of nuclear PTEN tyrosine phosphorylation enhances glioma radiation sensitivity through attenuated DNA repair. Cancer Cell 2019, 36: 690–691.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wang Y, Yang J, Zheng HR, Tomasek GJ, Zhang P, McKeever PE, et al. Expression of mutant p53 proteins implicates a lineage relationship between neural stem cells and malignant astrocytic glioma in a murine model. Cancer Cell 2009, 15: 514–526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization classification of tumors of the central nervous system: A summary. Acta Neuropathol 2016, 131: 803–820.

    Article  PubMed  Google Scholar 

  11. Ichimura K, Pearson DM, Kocialkowski S, Bäcklund LM, Chan R, Jones DTW, et al. IDH1 mutations are present in the majority of common adult gliomas but rare in primary glioblastomas. Neuro-oncology 2009, 11: 341–347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro-oncology 2021, 23: 1231–1251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Miller JJ, Loebel F, Juratli TA, Tummala SS, Williams EA, Batchelor TT, et al. Accelerated progression of IDH mutant glioma after first recurrence. Neuro-oncology 2019, 21: 669–677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yan H, Parsons DW, Jin GL, McLendon R, Rasheed BA, Yuan WS, et al. IDH1andIDH2Mutations in gliomas. N Engl J Med 2009, 360: 765–773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu S, Cadoux-Hudson T, Schofield CJ. Isocitrate dehydrogenase variants in cancer—cellular consequences and therapeutic opportunities. Curr Opin Chem Biol 2020, 57: 122–134.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Reitman ZJ, Yan H. Isocitrate dehydrogenase 1 and 2 mutations in cancer: alterations at a crossroads of cellular metabolism. J Natl Cancer Inst 2010, 102: 932–941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Waitkus MS, Diplas BH, Yan H. Isocitrate dehydrogenase mutations in gliomas. Neuro-oncology 2016, 18: 16–26.

    Article  CAS  PubMed  Google Scholar 

  18. Pirozzi CJ, Yan H. The implications of IDH mutations for cancer development and therapy. Nat Rev Clin Oncol 2021, 18: 645–661.

    Article  CAS  PubMed  Google Scholar 

  19. Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 2009, 462: 739–744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bhavya B, Anand CR, Madhusoodanan UK, Rajalakshmi P, Krishnakumar K, Easwer HV, et al. To be wild or mutant: Role of isocitrate dehydrogenase 1 (IDH1) and 2-hydroxy glutarate (2-HG) in gliomagenesis and treatment outcome in glioma. Cell Mol Neurobiol 2020, 40: 53–63.

    Article  CAS  PubMed  Google Scholar 

  21. Turcan S, Rohle D, Goenka A, Walsh LA, Fang F, Yilmaz E, et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 2012, 483: 479–483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K, Berman BP, et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 2010, 17: 510–522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chowdhury R, Yeoh KK, Tian YM, Hillringhaus L, Bagg EA, Rose NR, et al. The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases. EMBO Rep 2011, 12: 463–469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Huisman B, Manske G, Carney S, Kalantry S. Functional dissection of the m6A RNA modification. Trends Biochem Sci 2017, 42: 85–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang Y, Hsu PJ, Chen YS, Yang YG. Dynamic transcriptomic m 6 A decoration: writers, erasers, readers and functions in RNA metabolism. Cell Res 2018, 28: 616–624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gao Y, Ouyang X, Zuo L, Xiao Y, Sun Y, Chang C, et al. R-2HG downregulates ERα to inhibit cholangiocarcinoma via the FTO/m6A-methylated ERα/miR16-5p/YAP1 signal pathway. Mol Ther Oncolytics 2021, 23: 65–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Su R, Dong L, Li CY, Nachtergaele S, Wunderlich M, Qing Y, et al. R-2HG exhibits anti-tumor activity by targeting FTO/m 6 A/MYC/CEBPA signaling. Cell 2018, 172: 90-105.e23.

    Article  CAS  PubMed  Google Scholar 

  28. Qing Y, Dong L, Gao L, Li CY, Li YC, Han L, et al. R-2-hydroxyglutarate attenuates aerobic glycolysis in leukemia by targeting the FTO/m 6 A/PFKP/LDHB axis. Mol Cell 2021, 81: 922-939.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhao SM, Lin Y, Xu W, Jiang WQ, Zha ZY, Wang P, et al. Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science 2009, 324: 261–265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Semukunzi H, Roy D, Li HY, Khan GJ, Lyu XD, Yuan ST, et al. IDH mutations associated impact on related cancer epidemiology and subsequent effect toward HIF-1α. Biomed Pharmacother 2017, 89: 805–811.

    Article  CAS  PubMed  Google Scholar 

  31. Kwok D, Okada H. T-Cell based therapies for overcoming neuroanatomical and immunosuppressive challenges within the glioma microenvironment. J Neurooncol 2020, 147: 281–295.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zheng ZN, Zhang JX, Jiang JZ, He Y, Zhang WY, Mo XP, et al. Remodeling tumor immune microenvironment (TIME) for glioma therapy using multi-targeting liposomal codelivery. J Immunother Cancer 2020, 8: e000207.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kamran N, Alghamri MS, Nunez FJ, Shah D, Asad AS, Candolfi M, et al. Current state and future prospects of immunotherapy for glioma. Immunotherapy 2018, 10: 317–339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ma QQ, Long WY, Xing CS, Chu JJ, Luo M, Wang HY, et al. Cancer stem cells and immunosuppressive microenvironment in glioma. Front Immunol 2018, 9: 2924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Johnson DB, Sullivan RJ, Menzies AM. Immune checkpoint inhibitors in challenging populations. Cancer 2017, 123: 1904–1911.

    Article  PubMed  Google Scholar 

  36. Hambardzumyan D, Gutmann DH, Kettenmann H. The role of microglia and macrophages in glioma maintenance and progression. Nat Neurosci 2016, 19: 20–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Haage V, Semtner M, Vidal RO, Hernandez DP, Pong WW, Chen ZH, et al. Comprehensive gene expression meta-analysis identifies signature genes that distinguish microglia from peripheral monocytes/macrophages in health and glioma. Acta Neuropathol Commun 2019, 7: 20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Bennett ML, Bennett FC, Liddelow SA, Ajami B, Zamanian JL, Fernhoff NB, et al. New tools for studying microglia in the mouse and human CNS. Proc Natl Acad Sci U S A 2016, 113: E1738–E1746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bowman RL, Klemm F, Akkari L, Pyonteck SM, Sevenich L, Quail DF, et al. Macrophage ontogeny underlies differences in tumor-specific education in brain malignancies. Cell Rep 2016, 17: 2445–2459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Franco R, Fernández-Suárez D. Alternatively activated microglia and macrophages in the central nervous system. Prog Neurobiol 2015, 131: 65–86.

    Article  CAS  PubMed  Google Scholar 

  41. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 2002, 23: 549–555.

    Article  CAS  PubMed  Google Scholar 

  42. Müller S, Kohanbash G, Liu SJ, Alvarado B, Carrera D, Bhaduri A, et al. Single-cell profiling of human gliomas reveals macrophage ontogeny as a basis for regional differences in macrophage activation in the tumor microenvironment. Genome Biol 2017, 18: 234.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Qi L, Yu HQ, Zhang Y, Zhao DH, Lv P, Zhong Y, et al. IL-10 secreted by M2 macrophage promoted tumorigenesis through interaction with JAK2 in glioma. Oncotarget 2016, 7: 71673–71685.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wesolowska A, Kwiatkowska A, Slomnicki L, Dembinski M, Master A, Sliwa M, et al. Microglia-derived TGF-β as an important regulator of glioblastoma invasion—an inhibition of TGF-β-dependent effects by shRNA against human TGF-β type II receptor. Oncogene 2008, 27: 918–930.

    Article  CAS  PubMed  Google Scholar 

  45. Ye XZ, Xu SL, Xin YH, Yu SC, Ping YF, Chen L, et al. Tumor-associated microglia/macrophages enhance the invasion of glioma stem-like cells via TGF-β1 signaling pathway. J Immunol 2012, 189: 444–453.

    Article  CAS  PubMed  Google Scholar 

  46. Sørensen MD, Kristensen BW. Tumour-associated CD204 + microglia/macrophages accumulate in perivascular and perinecrotic niches and correlate with an interleukin-6-enriched inflammatory profile in glioblastoma. Neuropathol Appl Neurobiol 2022, 48: e12772.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Zhang YJ, Yu GZ, Chu HY, Wang XJ, Xiong LL, Cai GQ, et al. Macrophage-associated PGK1 phosphorylation promotes aerobic glycolysis and tumorigenesis. Mol Cell 2018, 71: 201-215.e7.

    Article  CAS  PubMed  Google Scholar 

  48. Kai K, Komohara Y, Esumi S, Fujiwara Y, Yamamoto T, Uekawa K, et al. Macrophage/microglia-derived IL-1β induces glioblastoma growth via the STAT3/NF-κB pathway. Hum Cell 2022, 35: 226–237.

    Article  CAS  PubMed  Google Scholar 

  49. Sørensen MD, Dahlrot RH, Boldt HB, Hansen S, Kristensen BW. Tumour-associated microglia/macrophages predict poor prognosis in high-grade gliomas and correlate with an aggressive tumour subtype. Neuropathol Appl Neurobiol 2018, 44: 185–206.

    Article  PubMed  CAS  Google Scholar 

  50. Ma D, Zhan DQ, Fu Y, Wei S, Lal B, Wang J, et al. Mutant IDH1 promotes phagocytic function of microglia/macrophages in gliomas by downregulating ICAM1. Cancer Lett 2021, 517: 35–45.

    Article  CAS  PubMed  Google Scholar 

  51. Wei S, Wang J, Oyinlade O, Ma D, Wang SY, Kratz L, et al. Heterozygous IDH1R132H/WT created by “single base editing” inhibits human astroglial cell growth by downregulating YAP. Oncogene 2018, 37: 5160–5174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Amankulor NM, Kim Y, Arora S, Kargl J, Szulzewsky F, Hanke M, et al. Mutant IDH1 regulates the tumor-associated immune system in gliomas. Genes Dev 2017, 31: 774–786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Poon CC, Gordon PMK, Liu K, Yang RZ, Sarkar S, Mirzaei R, et al. Differential microglia and macrophage profiles in human IDH-mutant and-wild type glioblastoma. Oncotarget 2019, 10: 3129–3143.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Friedrich M, Sankowski R, Bunse L, Kilian M, Green E, Ramallo Guevara C, et al. Tryptophan metabolism drives dynamic immunosuppressive myeloid states in IDH-mutant gliomas. Nat Cancer 2021, 2: 723–740.

    Article  CAS  PubMed  Google Scholar 

  55. Lin WZ, Qiu XX, Sun P, Ye YL, Huang QT, Kong L, et al. Association of IDH mutation and 1p19q co-deletion with tumor immune microenvironment in lower-grade glioma. Mol Ther Oncolytics 2021, 21: 288–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Venteicher AS, Tirosh I, Hebert C, Yizhak K, Neftel C, Filbin MG, et al. Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq. Science 2017, 355: eaai8478.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Barthel FP, Johnson KC, Varn FS, Moskalik AD, Tanner G, Kocakavuk E, et al. Longitudinal molecular trajectories of diffuse glioma in adults. Nature 2019, 576: 112–120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Han CJ, Zheng JY, Sun L, Yang HC, Cao ZQ, Zhang XH, et al. The oncometabolite 2-hydroxyglutarate inhibits microglial activation via the AMPK/mTOR/NF-κB pathway. Acta Pharmacol Sin 2019, 40: 1292–1302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. van Dierendonck XAMH, de Goede KE, van den Bossche J. IDH-mutant brain tumors hit the Achilles’ heel of macrophages with R-2-hydroxyglutarate. Trends Cancer 2021, 7: 666–667.

    Article  PubMed  CAS  Google Scholar 

  60. Gupta SS, Wang J, Chen M. Metabolic reprogramming in CD8 + T cells during acute viral infections. Front Immunol 2020, 11: 1013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kelly A, Trowsdale J. Genetics of antigen processing and presentation. Immunogenetics 2019, 71: 161–170.

    Article  CAS  PubMed  Google Scholar 

  62. Shastri N, Cardinaud S, Schwab SR, Serwold T, Kunisawa J. All the peptides that fit: The beginning, the middle, and the end of the MHC class I antigen-processing pathway. Immunol Rev 2005, 207: 31–41.

    Article  CAS  PubMed  Google Scholar 

  63. van Duijn J, Kuiper J, Slütter B. The many faces of CD8+ T cells in atherosclerosis. Curr Opin Lipidol 2018, 29: 411–416.

    Article  PubMed  CAS  Google Scholar 

  64. Gieryng A, Pszczolkowska D, Walentynowicz KA, Rajan WD, Kaminska B. Immune microenvironment of gliomas. Lab Invest 2017, 97: 498–518.

    Article  CAS  PubMed  Google Scholar 

  65. Kohanbash G, Carrera DA, Shrivastav S, Ahn BJ, Jahan N, Mazor T, et al. Isocitrate dehydrogenase mutations suppress STAT1 and CD8+ T cell accumulation in gliomas. J Clin Invest 2017, 127: 1425–1437.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Richardson LG, Nieman LT, Stemmer-Rachamimov AO, Zheng XS, Stafford K, Nagashima H, et al. IDH-mutant gliomas harbor fewer regulatory T cells in humans and mice. Oncoimmunology 2020, 9: 1806662.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Intlekofer AM, Dematteo RG, Venneti S, Finley LWS, Lu C, Judkins AR, et al. Hypoxia induces production of L-2-hydroxyglutarate. Cell Metab 2015, 22: 304–311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mullen AR, Hu ZP, Shi XL, Jiang L, Boroughs LK, Kovacs Z, et al. Oxidation of alpha-ketoglutarate is required for reductive carboxylation in cancer cells with mitochondrial defects. Cell Rep 2014, 7: 1679–1690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tyrakis PA, Palazon A, Macias D, Lee KL, Phan AT, Veliça P, et al. S-2-hydroxyglutarate regulates CD8+ T-lymphocyte fate. Nature 2016, 540: 236–241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Accogli T, Bruchard M, Végran F. Modulation of CD4 T cell response according to tumor cytokine microenvironment. Cancers 2021, 13: 373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kennedy R, Celis E. Multiple roles for CD4+ T cells in anti-tumor immune responses. Immunol Rev 2008, 222: 129–144.

    Article  CAS  PubMed  Google Scholar 

  72. Ahrends T, Borst J. The opposing roles of CD4 + T cells in anti-tumour immunity. Immunology 2018, 154: 582–592.

    Article  CAS  PubMed Central  Google Scholar 

  73. Grauer OM, Nierkens S, Bennink E, Toonen LWJ, Boon L, Wesseling P, et al. CD4+FoxP3+ regulatory T cells gradually accumulate in gliomas during tumor growth and efficiently suppress antiglioma immune responses in vivo. Int J Cancer 2007, 121: 95–105.

    Article  CAS  PubMed  Google Scholar 

  74. Maes W, Rosas GG, Verbinnen B, Boon L, de Vleeschouwer S, Ceuppens JL, et al. DC vaccination with anti-CD25 treatment leads to long-term immunity against experimental glioma. Neuro Oncol 2009, 11: 529–542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhang LJ, Sorensen MD, Kristensen BW, Reifenberger G, McIntyre TM, Lin F. D-2-hydroxyglutarate is an intercellular mediator in IDH-mutant gliomas inhibiting complement and T cells. Clin Cancer Res 2018, 24: 5381–5391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Schumacher T, Bunse L, Pusch S, Sahm F, Wiestler B, Quandt J, et al. A vaccine targeting mutant IDH1 induces antitumour immunity. Nature 2014, 512: 324–327.

    Article  CAS  PubMed  Google Scholar 

  77. Maher DP, Walia D, Heller NM. Suppression of human natural killer cells by different classes of opioids. Anesth Analg 2019, 128: 1013–1021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wu YL, Li J, Jabbarzadeh Kaboli P, Shen J, Wu X, Zhao YS, et al. Natural killer cells as a double-edged sword in cancer immunotherapy: a comprehensive review from cytokine therapy to adoptive cell immunotherapy. Pharmacol Res 2020, 155: 104691.

    Article  CAS  PubMed  Google Scholar 

  79. Ogbomo H, Cinatl J Jr, Mody CH, Forsyth PA. Immunotherapy in gliomas: limitations and potential of natural killer (NK) cell therapy. Trends Mol Med 2011, 17: 433–441.

    Article  CAS  PubMed  Google Scholar 

  80. Ren FF, Zhao QT, Huang L, Zheng YJ, Li LF, He QY, et al. The R132H mutation in IDH1 promotes the recruitment of NK cells through CX3CL1/CX3CR1 chemotaxis and is correlated with a better prognosis in gliomas. Immunol Cell Biol 2019, 97: 457–469.

    Article  CAS  PubMed  Google Scholar 

  81. Zhang XR, Rao A, Sette P, Deibert C, Pomerantz A, Kim WJ, et al. IDH mutant gliomas escape natural killer cell immune surveillance by downregulation of NKG2D ligand expression. Neuro-oncology 2016, 18: 1402–1412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yamashita AS, da Costa Rosa M, Borodovsky A, Festuccia WT, Chan T, Riggins GJ. Demethylation and epigenetic modification with 5-azacytidine reduces IDH1 mutant glioma growth in combination with temozolomide. Neuro-oncology 2019, 21: 189–200.

    Article  CAS  PubMed  Google Scholar 

  83. Dong H, Zhu G, Tamada K, Chen L. B7–H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med 1999, 5: 1365–1369.

    Article  CAS  PubMed  Google Scholar 

  84. Xi X, Liu JM, Guo JY. Correlation of PD-1/PD-L1 signaling pathway with treg/Th17 imbalance from asthmatic children. Int Arch Allergy Immunol 2018, 176: 255–267.

    Article  CAS  PubMed  Google Scholar 

  85. Sun C, Mezzadra R, Schumacher TN. Regulation and function of the PD-L1 checkpoint. Immunity 2018, 48: 434–452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 2000, 192: 1027–1034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 2008, 26: 677–704.

    Article  CAS  PubMed  Google Scholar 

  88. Jiang XJ, Wang J, Deng XY, Xiong F, Ge JS, Xiang B, et al. Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol Cancer 2019, 18: 10.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Kim JM, Chen DS. Immune escape to PD-L1/PD-1 blockade: Seven steps to success (or failure). Ann Oncol 2016, 27: 1492–1504.

    Article  CAS  PubMed  Google Scholar 

  90. Xue S, Hu M, Iyer V, Yu JM. Blocking the PD-1/PD-L1 pathway in glioma: a potential new treatment strategy. J Hematol Oncol 2017, 10: 81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Khasraw M, Reardon DA, Weller M, Sampson JH. PD-1 inhibitors: Do they have a future in the treatment of glioblastoma? Clin Cancer Res 2020, 26: 5287–5296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Cloughesy TF, Mochizuki AY, Orpilla JR, Hugo W, Lee AH, Davidson TB, et al. Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nat Med 2019, 25: 477–486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Berghoff AS, Kiesel B, Widhalm G, Wilhelm D, Rajky O, Kurscheid S, et al. Correlation of immune phenotype with IDH mutation in diffuse glioma. Neuro-oncology 2017, 19: 1460–1468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Röver LK, Gevensleben H, Dietrich J, Bootz F, Landsberg J, Goltz D, et al. PD-1 (PDCD1) promoter methylation is a prognostic factor in patients with diffuse lower-grade gliomas harboring isocitrate dehydrogenase (IDH) mutations. EBioMedicine 2018, 28: 97–104.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Mu LY, Long Y, Yang CL, Jin LC, Tao HP, Ge HT, et al. The IDH1 mutation-induced oncometabolite, 2-hydroxyglutarate, may affect DNA methylation and expression of PD-L1 in gliomas. Front Mol Neurosci 2018, 11: 82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Wang Z, Zhang CB, Liu X, Wang ZL, Sun LH, Li GZ, et al. Molecular and clinical characterization of PD-L1 expression at transcriptional level via 976 samples of brain glioma. Oncoimmunology 2016, 5: e1196310.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Brown EJ, Frazier WA. Integrin-associated protein (CD47) and its ligands. Trends Cell Biol 2001, 11: 130–135.

    Article  CAS  PubMed  Google Scholar 

  98. Logtenberg MEW, Scheeren FA, Schumacher TN. The CD47-SIRPα immune checkpoint. Immunity 2020, 52: 742–752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Liu XJ, Kwon H, Li ZH, Fu YX. Is CD47 an innate immune checkpoint for tumor evasion? J Hematol Oncol 2017, 10: 12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Hayat SMG, Bianconi V, Pirro M, Jaafari MR, Hatamipour M, Sahebkar A. CD47: role in the immune system and application to cancer therapy. Cell Oncol (Dordr) 2020, 43: 19–30.

    Article  CAS  Google Scholar 

  101. Liu XJ, Wu X, Wang YM, Li YH, Chen XL, Yang WC, et al. CD47 promotes human glioblastoma invasion through activation of the PI3K/Akt pathway. Oncol Res 2019, 27: 415–422.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Hutter G, Theruvath J, Graef CM, Zhang M, Schoen MK, Manz EM, et al. Microglia are effector cells of CD47-SIRPα antiphagocytic axis disruption against glioblastoma. Proc Natl Acad Sci U S A 2019, 116: 997–1006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhang XY, Chen W, Fan JJ, Wang SF, Xian ZS, Luan JY, et al. Disrupting CD47-SIRPα axis alone or combined with autophagy depletion for the therapy of glioblastoma. Carcinogenesis 2018, 39: 689–699.

    Article  CAS  PubMed  Google Scholar 

  104. Li F, Lv BK, Liu Y, Hua T, Han JB, Sun CM, et al. Blocking the CD47-SIRPα axis by delivery of anti-CD47 antibody induces antitumor effects in glioma and glioma stem cells. Oncoimmunology 2017, 7: e1391973.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Gowda P, Patrick S, Singh A, Sheikh T, Sen E. Mutant isocitrate dehydrogenase 1 disrupts PKM2-β-catenin-BRG1 transcriptional network-driven CD47 expression. Mol Cell Biol 2018, 38: e00001-e00018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhang CF, Chen JN, Song Q, Sun XY, Xue MJ, Yang ZY, et al. Comprehensive analysis of CTLA-4 in the tumor immune microenvironment of 33 cancer types. Int Immunopharmacol 2020, 85: 106633.

    Article  CAS  PubMed  Google Scholar 

  107. Field CS, Hunn MK, Ferguson PM, Ruedl C, Ancelet LR, Hermans IF. Blocking CTLA-4 while priming with a whole cell vaccine reshapes the oligoclonal T cell infiltrate and eradicates tumors in an orthotopic glioma model. OncoImmunology 2018, 7: e1376154.

    Article  Google Scholar 

  108. Fecci PE, Ochiai H, Mitchell DA, Grossi PM, Sweeney AE, Archer GE, et al. Systemic CTLA-4 blockade ameliorates glioma-induced changes to the CD4+ T cell compartment without affecting regulatory T-cell function. Clin Cancer Res 2007, 13: 2158–2167.

    Article  CAS  PubMed  Google Scholar 

  109. Liu FK, Huang J, Liu XM, Cheng Q, Luo CK, Liu ZX. CTLA-4 correlates with immune and clinical characteristics of glioma. Cancer Cell Int 2020, 20: 7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Yin YL, Stephen CW, Luciani MG, Fåhraeus R. p53 Stability and activity is regulated by Mdm2-mediated induction of alternative p53 translation products. Nat Cell Biol 2002, 4: 462–467.

    Article  CAS  PubMed  Google Scholar 

  111. Sabapathy K, Lane DP. Therapeutic targeting of p53: All mutants are equal, but some mutants are more equal than others. Nat Rev Clin Oncol 2018, 15: 13–30.

    Article  CAS  PubMed  Google Scholar 

  112. Ham SW, Jeon HY, Jin X, Kim EJ, Kim JK, Shin YJ, et al. TP53 gain-of-function mutation promotes inflammation in glioblastoma. Cell Death Differ 2019, 26: 409–425.

    Article  CAS  PubMed  Google Scholar 

  113. Pfaff E, Remke M, Sturm D, Benner A, Witt H, Milde T, et al. TP53 mutation is frequently associated with CTNNB1 mutation or MYCN amplification and is compatible with long-term survival in medulloblastoma. J Clin Oncol 2010, 28: 5188–5196.

    Article  CAS  PubMed  Google Scholar 

  114. Rahman M, Kresak J, Yang CL, Huang JP, Hiser W, Kubilis P, et al. Analysis of immunobiologic markers in primary and recurrent glioblastoma. J Neurooncol 2018, 137: 249–257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Thomas SL, Schultz CR, Mouzon E, Golembieski WA, El Naili R, Radakrishnan A, et al. Loss of sparc in p53-null astrocytes promotes macrophage activation and phagocytosis resulting in decreased tumor size and tumor cell survival. Brain Pathol 2015, 25: 391–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Fults D, Pedone C. Immunocytochemical mapping of the phosphatase and tensin homolog (PTEN/MMAC1) tumor suppressor protein in human gliomas. Neuro-oncology 2000, 2: 71–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Parsa AT, Waldron JS, Panner A, Crane CA, Parney IF, Barry JJ, et al. Loss of tumor suppressor PTEN function increases B7–H1 expression and immunoresistance in glioma. Nat Med 2007, 13: 84–88.

    Article  CAS  PubMed  Google Scholar 

  118. Waldron JS, Yang I, Han S, Tihan T, Sughrue ME, Mills SA, et al. Implications for immunotherapy of tumor-mediated T-cell apoptosis associated with loss of the tumor suppressor PTEN in glioblastoma. J Clin Neurosci 2010, 17: 1543–1547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhao JF, Chen AX, Gartrell RD, Silverman AM, Aparicio L, Chu T, et al. Immune and genomic correlates of response to anti-PD-1 immunotherapy in glioblastoma. Nat Med 2019, 25: 462–469.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Fan QW, Cheng CK, Gustafson WC, Charron E, Zipper P, Wong RA, et al. EGFR phosphorylates tumor-derived EGFRvIII driving STAT3/5 and progression in glioblastoma. Cancer Cell 2013, 24: 438–449.

    Article  CAS  PubMed  Google Scholar 

  121. Chistiakov DA, Chekhonin IV, Chekhonin VP. The EGFR variant III mutant as a target for immunotherapy of glioblastoma multiforme. Eur J Pharmacol 2017, 810: 70–82.

    Article  CAS  PubMed  Google Scholar 

  122. Binder ZA, Thorne AH, Bakas S, Wileyto EP, Bilello M, Akbari H, et al. Epidermal growth factor receptor extracellular domain mutations in glioblastoma present opportunities for clinical imaging and therapeutic development. Cancer Cell 2018, 34: 163-177.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Gschwind A, Fischer OM, Ullrich A. The discovery of receptor tyrosine kinases: targets for cancer therapy. Nat Rev Cancer 2004, 4: 361–370.

    Article  CAS  PubMed  Google Scholar 

  124. Segura-Collar B, Garranzo-Asensio M, Herranz B, Hernández-Sanmiguel E, Cejalvo T, Casas BS, et al. Tumor-derived pericytes driven by EGFR mutations govern the vascular and immune microenvironment of gliomas. Cancer Res 2021, 81: 2142–2156.

    Article  CAS  PubMed  Google Scholar 

  125. Sampson JH, Archer GE, Mitchell DA, Heimberger AB, Bigner DD. Tumor-specific immunotherapy targeting the EGFRvIII mutation in patients with malignant glioma. Semin Immunol 2008, 20: 267–275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Rohle D, Popovici-Muller J, Palaskas N, Turcan S, Grommes C, Campos C, et al. An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science 2013, 340: 626–630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Zheng QG, Tang S, Fu XL, Chen ZQ, Ye Y, Lan XJ, et al. Discovery and structure-activity-relationship study of novel conformationally restricted indane analogues for mutant isocitric dehydrogenase 1 (IDH1) inhibitors. Bioorg Med Chem Lett 2017, 27: 5262–5266.

    Article  CAS  PubMed  Google Scholar 

  128. Levell JR, Caferro T, Chenail G, Dix I, Dooley J, Firestone B, et al. Optimization of 3-pyrimidin-4-yl-oxazolidin-2-ones as allosteric and mutant specific inhibitors of IDH1. ACS Med Chem Lett 2016, 8: 151–156.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Deng GJ, Shen JQ, Yin M, McManus J, Mathieu M, Gee P, et al. Selective inhibition of mutant isocitrate dehydrogenase 1 (IDH1) via disruption of a metal binding network by an allosteric small molecule. J Biol Chem 2015, 290: 762–774.

    Article  CAS  PubMed  Google Scholar 

  130. Kim HJ, Fei X, Cho SC, Choi BY, Ahn HC, Lee K, et al. Discovery of α-mangostin as a novel competitive inhibitor against mutant isocitrate dehydrogenase-1. Bioorg Med Chem Lett 2015, 25: 5625–5631.

    Article  CAS  PubMed  Google Scholar 

  131. Caravella JA, Lin J, Diebold RB, Campbell AM, Ericsson A, Gustafson G, et al. Structure-based design and identification of FT-2102 (olutasidenib), a potent mutant-selective IDH1 inhibitor. J Med Chem 2020, 63: 1612–1623.

    Article  CAS  PubMed  Google Scholar 

  132. Cho YS, Levell JR, Liu G, Caferro T, Sutton J, Shafer CM, et al. Discovery and evaluation of clinical candidate IDH305, a brain penetrant mutant IDH1 inhibitor. ACS Med Chem Lett 2017, 8: 1116–1121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Nakagawa M, Nakatani F, Matsunaga H, Seki T, Endo M, Ogawara Y, et al. Selective inhibition of mutant IDH1 by DS-1001b ameliorates aberrant histone modifications and impairs tumor activity in chondrosarcoma. Oncogene 2019, 38: 6835–6849.

    Article  CAS  PubMed  Google Scholar 

  134. Natsume A, Wakabayashi T, Miyakita Y, Narita Y, Mineharu Y, Arakawa Y, et al. Phase I study of a brain penetrant mutant IDH1 inhibitor DS-1001b in patients with recurrent or progressive IDH1 mutant gliomas. J Clin Oncol 2004, 2019: 37.

    Google Scholar 

  135. Ma TF, Zou FX, Pusch S, Xu YG, von Deimling A, Zha XM. Inhibitors of mutant isocitrate dehydrogenases 1 and 2 (mIDH1/2): an update and perspective. J Med Chem 2018, 61: 8981–9003.

    Article  CAS  PubMed  Google Scholar 

  136. Fujii T, Khawaja MR, DiNardo CD, Atkins JT, Janku F. Targeting isocitrate dehydrogenase (IDH) in cancer. Discov Med 2016, 21: 373–380.

    PubMed  Google Scholar 

  137. Upadhyay VA, Brunner AM, Fathi AT. Isocitrate dehydrogenase (IDH) inhibition as treatment of myeloid malignancies: progress and future directions. Pharmacol Ther 2017, 177: 123–128.

    Article  CAS  PubMed  Google Scholar 

  138. Popovici-Muller J, Lemieux RM, Artin E, Saunders JO, Salituro FG, Travins J, et al. Discovery of AG-120 (ivosidenib): a first-in-class mutant IDH1 inhibitor for the treatment of IDH1 mutant cancers. ACS Med Chem Lett 2018, 9: 300–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Hansen E, Quivoron C, Straley K, Lemieux RM, Popovici-Muller J, Sadrzadeh H, et al. AG-120, an oral, selective, first-in-class, potent inhibitor of mutant IDH1, reduces intracellular 2HG and induces cellular differentiation in TF-1 R132H cells and primary human IDH1 mutant AML patient samples treated ex vivo. Blood 2014, 124: 3734.

    Article  Google Scholar 

  140. Dhillon S. Ivosidenib: first global approval. Drugs 2018, 78: 1509–1516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Mellinghoff IK, Ellingson BM, Touat M, Maher E, de la Fuente MI, Holdhoff M, et al. Ivosidenib in isocitrate dehydrogenase 1–mutated advanced glioma. J Clin Oncol 2020, 38: 3398–3406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Shih AH, Shank KR, Meydan C, Intlekofer AM, Ward P, Thompson CB, et al. AG-221, a small molecule mutant IDH2 inhibitor, remodels the epigenetic state of IDH2-mutant cells and induces alterations in self-renewal/differentiation in IDH2-mutant AML model in vivo. Blood 2014, 124: 437.

    Article  Google Scholar 

  143. Yen K, Travins J, Wang F, David MD, Artin E, Straley K, et al. AG-221, a first-in-class therapy targeting acute myeloid leukemia harboring oncogenic IDH2 mutations. Cancer Discov 2017, 7: 478–493.

    Article  CAS  PubMed  Google Scholar 

  144. Weller M, Roth P, Preusser M, Wick W, Reardon DA, Platten M, et al. Vaccine-based immunotherapeutic approaches to gliomas and beyond. Nat Rev Neurol 2017, 13: 363–374.

    Article  CAS  PubMed  Google Scholar 

  145. Platten M, Bunse L, Wick A, Bunse T, le Cornet L, Harting I, et al. A vaccine targeting mutant IDH1 in newly diagnosed glioma. Nature 2021, 592: 463–468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Taylor & Francis (www.tandfeditingservices.cn) for its linguistic assistance during the preparation of this manuscript. This review was supported by the Translational Medicine Research Fund of Zhongnan Hospital of Wuhan University (ZLYNXM202011 and ZNLH201901) and the National Health Commission of China (2018ZX-07S-011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zefen Wang or Zhiqiang Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, F., Pan, Z., Wang, Y. et al. Advances in the Immunotherapeutic Potential of Isocitrate Dehydrogenase Mutations in Glioma. Neurosci. Bull. 38, 1069–1084 (2022). https://doi.org/10.1007/s12264-022-00866-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-022-00866-1

Keywords

Navigation