Skip to main content

Advertisement

Log in

Post-stroke pain hypersensitivity induced by experimental thalamic hemorrhage in rats is region-specific and demonstrates limited efficacy of gabapentin

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Intractable central post-stroke pain (CPSP) is one of the most common sequelae of stroke, but has been inadequately studied to date. In this study, we first determined the relationship between the lesion site and changes in mechanical or thermal pain sensitivity in a rat CPSP model with experimental thalamic hemorrhage produced by unilateral intra-thalamic collagenase IV (ITC) injection. Then, we evaluated the efficacy of gabapentin (GBP), an anticonvulsant that binds the voltage-gated Ca2+ channel α2δ and a commonly used anti-neuropathic pain medication. Histological case-by-case analysis showed that only lesions confined to the medial lemniscus and the ventroposterior lateral/medial nuclei of the thalamus and/or the posterior thalamic nucleus resulted in bilateral mechanical pain hypersensitivity. All of the animals displaying CPSP also had impaired motor coordination, while control rats with intra-thalamic saline developed no central pain or motor deficits. GBP had a dose-related anti-allodynic effect after a single administration (1, 10, or 100 mg/kg) on day 7 post-ITC, with significant effects lasting at least 5 h for the higher doses. However, repeated treatment, once a day for two weeks, resulted in complete loss of effectiveness (drug tolerance) at 10 mg/kg, while effectiveness remained at 100 mg/kg, although the time period of efficacious analgesia was reduced. In addition, GBP did not change the basal pain sensitivity and the motor impairment caused by the ITC lesion, suggesting selective action of GBP on the somatosensory system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O’Donnell MJ, Xavier D, Liu L, Zhang H, Chin SL, Rao-Melacini P, et al. Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-control study. Lancet 2010, 376: 112–123.

    Article  PubMed  Google Scholar 

  2. Jia Q, Liu LP, Wang YJ. Stroke in China. Clin Exp Pharmacol Physiol 2010, 37: 259–264.

    Article  CAS  PubMed  Google Scholar 

  3. Liu M, Wu B, Wang WZ, Lee LM, Zhang SH, Kong LZ. Stroke in China: epidemiology, prevention, and management strategies. Lancet Neurol 2007, 6: 456–464.

    Article  PubMed  Google Scholar 

  4. Tsai CF, Thomas B, Sudlow CL. Epidemiology of stroke and its subtypes in Chinese vs white populations: a systematic review. Neurology 2013, 81: 264–272.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Henry JL. Central poststroke pain: An animal model. In: Henry JL, Panju A, Yashpal K, editors. Central Neuropathic Pain: Focus on Poststroke Pain. Seattle: IASP Press, 2007.

    Google Scholar 

  6. Henry JL, Lalloo C, Yashpal K. Central poststroke pain: an abstruse outcome. Pain Res Manag 2008, 13: 41–49.

    PubMed Central  PubMed  Google Scholar 

  7. Jensen TS, Finnerup NB. Central pain. In: McMahon SB, Koltzenburg M, Tracey I, Turk DC, editors. Wall and Melzack’s Textbook of Pain, 6th edition. Philadelphia: Elsevier Saunders (Printed in China), 2013.

    Google Scholar 

  8. Jensen TS, Lenz FA. Central post-stroke pain: a challenge for the scientist and the clinician. Pain 1995, 61: 161–164.

    Article  CAS  PubMed  Google Scholar 

  9. Kim JS. Post-stroke pain. Expert Rev Neurother 2009, 9: 711–721.

    Article  CAS  PubMed  Google Scholar 

  10. Klit H, Finnerup NB, Jensen TS. Central post-stroke pain: clinical characteristics, pathophysiology, and management. Lancet Neurol 2009, 8: 857–868.

    Article  PubMed  Google Scholar 

  11. Kumar B, Kalita J, Kumar G, Misra UK. Central poststroke pain: a review of pathophysiology and treatment. Anesth Analg 2009, 108: 1645–1657.

    Article  PubMed  Google Scholar 

  12. Kumar G, Soni CR. Central post-stroke pain: current evidence. J Neurol Sci 2009, 284: 10–17.

    Article  PubMed  Google Scholar 

  13. Andersen G, Vestergaard K, Ingeman-Nielsen M, Jensen TS. Incidence of central post-stroke pain. Pain 1995, 61: 187–193.

    Article  CAS  PubMed  Google Scholar 

  14. Bowsher D. Stroke and central poststroke pain in an elderly population. J Pain 2001, 2: 258–261.

    Article  CAS  PubMed  Google Scholar 

  15. Jonsson AC, Lindgren I, Hallstrom B, Norrving B, Lindgren A. Prevalence and intensity of pain after stroke: a population based study focusing on patients’ perspectives. J Neurol Neurosurg Psychiatry 2006, 77: 590–595.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Kong KH, Woon VC, Yang SY. Prevalence of chronic pain and its impact on health-related quality of life in stroke survivors. Arch Phys Med Rehabil 2004, 85: 35–40.

    Article  PubMed  Google Scholar 

  17. Raffaeli W, Minella CE, Magnani F, Sarti D. Population-based study of central post-stroke pain in Rimini district, Italy. J Pain Res 2013, 6: 705–711.

    PubMed Central  PubMed  Google Scholar 

  18. Bogousslavsky J, Regli F, Uske A. Thalamic infarcts: clinical syndromes, etiology, and prognosis. Neurology 1988, 38: 837–848.

    Article  CAS  PubMed  Google Scholar 

  19. Chung CS, Caplan LR, Han W, Pessin MS, Lee KH, Kim JM. Thalamic haemorrhage. Brain 1996, 119: 1873–1886.

    Article  PubMed  Google Scholar 

  20. Kumral E, Kocaer T, Ertubey NO, Kumral K. Thalamic hemorrhage: A prospective study of 100 patients. Stroke 1995, 26: 964–970.

    Article  CAS  PubMed  Google Scholar 

  21. Nasreddine ZS, Saver JL. Pain after thalamic stroke: right diencephalic predominance and clinical features in 180 patients. Neurology 1997, 48: 1196–1199.

    Article  CAS  PubMed  Google Scholar 

  22. Paciaroni M, Bogousslavsky J. Pure sensory syndromes in thalamic stroke. Eur Neurol 1998, 39: 211–217.

    Article  CAS  PubMed  Google Scholar 

  23. Wessel K, Vieregge P, Kessler C, Kompf D. Thalamic stroke: correlation of clinical symptoms, somatosensory evoked potentials, and CT findings. Acta Neurol Scand 1994, 90: 167–173.

    Article  CAS  PubMed  Google Scholar 

  24. Henry JL, Panju A, Yashpal K (Eds). Central Neuropathic Pain: Focus on Poststroke Pain. Seattle: IASP Press, 2007.

    Google Scholar 

  25. Dworkin RH, O’Connor AB, Audette J, Baron R, Gourlay GK, Haanpaa ML, et al. Recommendations for the pharmacological management of neuropathic pain: an overview and literature update. Mayo Clin Proc 2010, 85: S3–S14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Dworkin RH, O’Connor AB, Backonja M, Farrar JT, Finnerup NB, Jensen TS, et al. Pharmacologic management of neuropathic pain: evidence-based recommendations. Pain 2007, 132: 237–251.

    Article  CAS  PubMed  Google Scholar 

  27. Haanpaa M, Attal N, Backonja M, Baron R, Bennett M, Bouhassira D, et al. NeuPSIG guidelines on neuropathic pain assessment. Pain 2011, 152: 14–27.

    Article  PubMed  Google Scholar 

  28. O’Connor AB, Dworkin RH. Treatment of neuropathic pain: an overview of recent guidelines. Am J Med 2009, 122: S22–S32.

    Article  PubMed  Google Scholar 

  29. Finnerup NB, Sindrup SH, Jensen TS. The evidence for pharmacological treatment of neuropathic pain. Pain 2010, 150: 573–581.

    Article  PubMed  Google Scholar 

  30. Finnerup NB, Gottrup H, Jensen TS. Anticonvulsants in central pain. Expert Opin Pharmacother 2002, 3: 1411–1420.

    Article  CAS  PubMed  Google Scholar 

  31. Kim JS, Bashford G, Murphy TK, Martin A, Dror V, Cheung R. Safety and efficacy of pregabalin in patients with central poststroke pain. Pain 2011, 152: 1018–1023.

    Article  CAS  PubMed  Google Scholar 

  32. Castel A, Helie P, Beaudry F, Vachon P. Bilateral central pain sensitization in rats following a unilateral thalamic lesion may be treated with high doses of ketamine. BMC Vet Res 2013, 9: 59.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Hanada T, Kurihara T, Tokudome M, Tokimura H, Arita K, Miyata A. Development and pharmacological verification of a new mouse model of central post-stroke pain. Neurosci Res 2014, 78: 72–80.

    Article  CAS  PubMed  Google Scholar 

  34. Wasserman JK, Koeberle PD. Development and characterization of a hemorrhagic rat model of central poststroke pain. Neuroscience 2009, 161: 173–183.

    Article  CAS  PubMed  Google Scholar 

  35. Castel A, Vachon P. Gabapentin reverses central pain sensitization following a collagenase-induced intrathalamic hemorrhage in rats. J Pain Res 2013, 17: 5–12.

    Google Scholar 

  36. Amr YM. Multi-day low dose ketamine infusion as adjuvant to oral gabapentin in spinal cord injury related chronic pain: a prospective, randomized, double blind trial. Pain Physician 2010, 13: 245–249.

    PubMed  Google Scholar 

  37. To TP, Lim TC, Hill ST, Frauman AG, Cooper N, Kirsa SW, Brown DJ. Gabapentin for neuropathic pain following spinal cord injury. Spinal Cord 2002, 40: 282–285.

    Article  PubMed  Google Scholar 

  38. Vranken JH, Dijkgraaf MG, Kruis MR, Van der Vegt MH, Hollmann MW, Heesen M. Pregabalin in patients with central neuropathic pain: a randomized, double-blind, placebocontrolled trial of a flexible-dose regimen. Pain 2008, 136: 150–157.

    Article  CAS  PubMed  Google Scholar 

  39. Finnerup NB. A review of central neuropathic pain states. Curr Opin Anaesthesiol 2008, 21: 586–589.

    Article  PubMed  Google Scholar 

  40. Siniscalchi A, Gallelli L, De Sarro G, Malferrari G, Santangelo E. Antiepileptic drugs for central post-stroke pain management. Pharmacol Res 2012, 65: 171–175.

    Article  CAS  PubMed  Google Scholar 

  41. Ren LY, Lu ZM, Liu MG, Yu YQ, Li Z, Shang GW, et al. Distinct roles of the anterior cingulate cortex in spinal and supraspinal bee venom-induced pain behaviors. Neuroscience 2008, 153: 268–278.

    Article  CAS  PubMed  Google Scholar 

  42. Back SK, Won SY, Hong SK, Na HS. Gabapentin relieves mechanical, warm and cold allodynia in a rat model of peripheral neuropathy. Neurosci Lett 2004, 368: 341–344.

    Article  CAS  PubMed  Google Scholar 

  43. Chen SR, Pan HL. Effect of systemic and intrathecal gabapentin on allodynia in a new rat model of postherpetic neuralgia. Brain Res 2005, 1042: 108–113.

    Article  CAS  PubMed  Google Scholar 

  44. Coetzee JF, Mosher RA, Kohake LE, Cull CA, Kelly LL, Mueting SL, et al. Pharmacokinetics of oral gabapentin alone or co-administered with meloxicam in ruminant beef calves. Vet J 2011, 190: 98–102.

    Article  CAS  PubMed  Google Scholar 

  45. Pan HL, Eisenach JC, Chen SR. Gabapentin suppresses ectopic nerve discharges and reverses allodynia in neuropathic rats. J Pharmacol Exp Ther 1999, 288: 1026–1030.

    CAS  PubMed  Google Scholar 

  46. Chen J, Luo C, Li H, Chen H. Primary hyperalgesia to mechanical and heat stimuli following subcutaneous bee venom injection into the plantar surface of hindpaw in the conscious rat: a comparative study with the formalin test. Pain 1999, 83: 67–76.

    Article  CAS  PubMed  Google Scholar 

  47. Cao FL, Shang GW, Wang Y, Yang F, Li CL, Chen J. Antinociceptive effects of intragastric DL-tetrahydropalmatine on visceral and somatic persistent nociception and pain hypersensitivity in rats. Pharmacol Biochem Behav 2011, 100: 199–204.

    Article  CAS  PubMed  Google Scholar 

  48. Yu HY, Liu MG, Liu DN, Shang GW, Wang Y, Qi C, et al. Antinociceptive effects of systemic paeoniflorin on bee venom-induced various ‘phenotypes’ of nociception and hypersensitivity. Pharmacol Biochem Behav 2007, 88: 131–140.

    Article  CAS  PubMed  Google Scholar 

  49. Jones EG. The Thalamus. New York: Plenum, 1985.

    Book  Google Scholar 

  50. Cruccu G, Sommer C, Anand P, Attal N, Baron R, Garcia-Larrea L, et al. EFNS guidelines on neuropathic pain assessment: revised 2009. Eur J Neurol 2010, 17: 101–118.

    Article  Google Scholar 

  51. Treede RD, Jensen TS, Campbell JN, Cruccu G, Dostrovsky JO, Griffin JW, et al. Neuropathic pain: Redefinition and a grading system for clinical and research purposes. Neurology 2008, 70: 1630–1635.

    Article  CAS  PubMed  Google Scholar 

  52. Kim JH, Greenspan JD, Coghill RC, Ohara S, Lenz FA. Lesions limited to the human thalamic principal somatosensory nucleus (ventral caudal) are associated with loss of cold sensations and central pain. The Journal of neuroscience 2007, 27: 4995–5004.

    Article  CAS  PubMed  Google Scholar 

  53. Krause T, Brunecker P, Pittl S, Taskin B, Laubisch D, Winter B, et al. Thalamic sensory strokes with and without pain: differences in lesion patterns in the ventral posterior thalamus. J Neurol Neurosurg Psychiatry 2012, 83: 776–784.

    Article  PubMed  Google Scholar 

  54. Montes C, Magnin M, Maarrawi J, Frot M, Convers P, Mauguiere F, et al. Thalamic thermo-algesic transmission: ventral posterior (VP) complex versus VMpo in the light of a thalamic infarct with central pain. Pain 2005, 113: 223–232.

    Article  PubMed  Google Scholar 

  55. Sprenger T, Seifert CL, Valet M, Andreou AP, Foerschler A, Zimmer C, et al. Assessing the risk of central post-stroke pain of thalamic origin by lesion mapping. Brain 2012, 135: 2536–2545.

    Article  PubMed  Google Scholar 

  56. LaBuda CJ, Cutler TD, Dougherty PM, Fuchs PN. Mechanical and thermal hypersensitivity develops following kainate lesion of the ventral posterior lateral thalamus in rats. Neuroscience letters 2000, 290: 79–83.

    Article  CAS  PubMed  Google Scholar 

  57. Saade NE, Kafrouni AI, Saab CY, Atweh SF, Jabbur SJ. Chronic thalamotomy increases pain-related behavior in rats. Pain 1999, 83: 401–409.

    Article  CAS  PubMed  Google Scholar 

  58. Takami K, Fujita Hamabe W, Harada S, Tokuyama S. Aβ and Aδ but not C fibres are involved in stroke related pain and allodynia: an experimental study in mice. J Pharm Pharmacol 2011, 63: 452–456.

    Article  CAS  PubMed  Google Scholar 

  59. Tamiya S, Yoshida Y, Harada S, Nakamoto K, Tokuyama S. Establishment of a central post stroke pain model using global cerebral ischaemic mice. J Pharm Pharmacol 2013, 65: 615–620.

    Article  CAS  PubMed  Google Scholar 

  60. Sun H, Ren K, Zhong CM, Ossipov MH, Malan TP, Lai J, et al. Nerve injury-induced tactile allodynia is mediated via ascending spinal dorsal column projections. Pain 2001, 90: 105–111.

    Article  CAS  PubMed  Google Scholar 

  61. Casey KL, Geisser M, Lorenz J, Morrow TJ, Paulson P, Minoshima S. Psychophysical and cerebral responses to heat stimulation in patients with central pain, painless central sensory loss, and in healthy persons. Pain 2012, 153: 331–341.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Blomqvist A, Zhang ET, Craig AD. Cytoarchitectonic and immunohistochemical characterization of a specific pain and temperature relay, the posterior portion of the ventral medial nucleus, in the human thalamus. Brain 2000, 123: 601–619.

    Article  PubMed  Google Scholar 

  63. Craig AD, Bushnell MC, Zhang ET, Blomqvist A. A thalamic nucleus specific for pain and temperature sensation. Nature 1994, 372: 770–773.

    Article  CAS  PubMed  Google Scholar 

  64. Davies A, Hendrich J, Van Minh AT, Wratten J, Douglas L, Dolphin AC. Functional biology of the alpha(2)delta subunits of voltage-gated calcium channels. Trends in pharmacological sciences 2007, 28: 220–228.

    Article  CAS  PubMed  Google Scholar 

  65. Klugbauer N, Marais E, Hofmann F. Calcium channel alpha2delta subunits: differential expression, function, and drug binding. J Bioenerg Biomembr 2003, 35: 639–647.

    Article  CAS  PubMed  Google Scholar 

  66. Maneuf YP, Gonzalez MI, Sutton KS, Chung FZ, Pinnock RD, Lee K. Cellular and molecular action of the putative GABAmimetic, gabapentin. Cell Mol Life Sci 2003, 60: 742–750.

    Article  CAS  PubMed  Google Scholar 

  67. Bauer CS, Nieto-Rostro M, Rahman W, Tran-Van-Minh A, Ferron L, Douglas L, et al. The increased trafficking of the calcium channel subunit alpha2delta-1 to presynaptic terminals in neuropathic pain is inhibited by the alpha2delta ligand pregabalin. J Neurosci 2009, 29: 4076–4088.

    Article  CAS  PubMed  Google Scholar 

  68. Bauer CS, Rahman W, Tran-van-Minh A, Lujan R, Dickenson AH, Dolphin AC. The anti-allodynic alpha(2)delta ligand pregabalin inhibits the trafficking of the calcium channel alpha(2)delta-1 subunit to presynaptic terminals in vivo. Biochem Soc Trans 2010, 38: 525–528.

    Article  CAS  PubMed  Google Scholar 

  69. Dooley DJ, Taylor CP, Donevan S, Feltner D. Ca2+ channel alpha2delta ligands: novel modulators of neurotransmission. Trends Pharmacol Sci 2007, 28: 75–82.

    Article  CAS  PubMed  Google Scholar 

  70. Hendrich J, Van Minh AT, Heblich F, Nieto-Rostro M, Watschinger K, Striessnig J, et al. Pharmacological disruption of calcium channel trafficking by the alpha2delta ligand gabapentin. Proc Natl Acad Sci U S A 2008, 105: 3628–3633.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Li CY, Song YH, Higuera ES, Luo ZD. Spinal dorsal horn calcium channel alpha2delta-1 subunit upregulation contributes to peripheral nerve injury-induced tactile allodynia. J Neurosci 2004, 24: 8494–8499.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Li CY, Zhang XL, Matthews EA, Li KW, Kurwa A, Boroujerdi A, et al. Calcium channel alpha2delta1 subunit mediates spinal hyperexcitability in pain modulation. Pain 2006, 125: 20–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Luo ZD, Calcutt NA, Higuera ES, Valder CR, Song YH, Svensson CI, et al. Injury type-specific calcium channel alpha 2 delta-1 subunit up-regulation in rat neuropathic pain models correlates with antiallodynic effects of gabapentin. J Pharmacol Exp Ther 2002, 303: 1199–1205.

    Article  CAS  PubMed  Google Scholar 

  74. Luo ZD, Chaplan SR, Higuera ES, Sorkin LS, Stauderman KA, Williams ME, et al. Upregulation of dorsal root ganglion (alpha)2(delta) calcium channel subunit and its correlation with allodynia in spinal nerve-injured rats. J Neurosci 2001, 21: 1868–1875.

    CAS  PubMed  Google Scholar 

  75. Taylor CP. Mechanisms of analgesia by gabapentin and pregabalin—calcium channel alpha2-delta [Cavalpha2-delta] ligands. Pain 2009, 142: 13–16.

    Article  CAS  PubMed  Google Scholar 

  76. Erichsen HK, Blackburn-Munro G. Pharmacological characterisation of the spared nerve injury model of neuropathic pain. Pain 2002, 98: 151–161.

    Article  CAS  PubMed  Google Scholar 

  77. Gustafsson H, Flood K, Berge OG, Brodin E, Olgart L, Stiller CO. Gabapentin reverses mechanical allodynia induced by sciatic nerve ischemia and formalin-induced nociception in mice. Exp Neurol 2003, 182: 427–434.

    Article  CAS  PubMed  Google Scholar 

  78. Kukanich B, Cohen RL. Pharmacokinetics of oral gabapentin in greyhound dogs. Vet J 2011, 187: 133–135.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Meregalli C, Ceresa C, Canta A, Carozzi VA, Chiorazzi A, Sala B, et al. CR4056, a new analgesic I2 ligand, is highly effective against bortezomib-induced painful neuropathy in rats. J Pain Res 2012, 5: 151–167.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Kusunose N, Koyanagi S, Hamamura K, Matsunaga N, Yoshida M, Uchida T, et al. Molecular basis for the dosing time-dependency of anti-allodynic effects of gabapentin in a mouse model of neuropathic pain. Mol Pain 2010, 6: 83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Chen.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Fu, H., Lu, YF. et al. Post-stroke pain hypersensitivity induced by experimental thalamic hemorrhage in rats is region-specific and demonstrates limited efficacy of gabapentin. Neurosci. Bull. 30, 887–902 (2014). https://doi.org/10.1007/s12264-014-1477-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-014-1477-5

Keywords

Navigation