Skip to main content
Log in

Cysteine residues 87 and 320 in the amino terminal domain of NMDA receptor GluN2A govern its homodimerization but do not influence GluN2A/GluN1 heteromeric assembly

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

N-Methyl-D-aspartate receptors (NMDARs) play a central role in various physiological and pathological processes in the central nervous system. And they are commonly composed of four subunits, two GluN1 subunits and two GluN2 or GluN3 subunits. The different subunit compositions make NMDARs a heterogeneous population with distinct electrophysiological and pharmacological properties and thus with different abilities to conduct neuronal activities. The subunit composition, assembly process, and final structure of assembled NMDARs have been studied for years but no consensus has been achieved. In this study, we investigated the role of the amino terminal domain (ATD) of GluN2A in regulating NMDAR assembly. The ATD of GluN2A was first expressed in heterogeneous cells and the homodimer formation was investigated by fluorescent resonance energy transfer and non-reducing SDSPAGE electrophoresis. Each of the three cysteine residues located in the ATD was mutated into alanine, and the homodimerization of the ATD or GluN2A, as well as the heteromeric assembly of NMDARs was assessed by non-reducing SDSPAGE electrophoresis, co-immunoprecipitation and immunocytochemistry. We found that two cysteine residues, C87 and C320, in the ATD of the GluN2A subunit were required for the formation of disulfide bonds and GluN2A ATD homodimers. Furthermore, the disruption of GluN2A ATD domain dimerization had no influence on the assembly and surface expression of NMDARs. These results suggest that the two ATD domains of GluN2A are structurally adjacent in fully-assembled NMDARs. However, unlike GluN1, the homomerization of the ATD domain of GluN2A is not required for the assembly of NMDARs, implying that GluN2A and GluN1 play unequal roles in NMDAR assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Meguro H, Mori H, Araki K, Kushiya E, Kutsuwada T, Yamazaki M, et al. Functional characterization of a heteromeric NMDA receptor channel expressed from cloned cDNAs. Nature 1992, 357: 70–74.

    Article  PubMed  CAS  Google Scholar 

  2. Monyer H, Sprengel R, Schoepfer R, Herb A, Higuchi M, Lomeli H, et al. Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science 1992, 256: 1217–1221.

    Article  PubMed  CAS  Google Scholar 

  3. Schorge S, Colquhoun D. Studies of NMDA receptor function and stoichiometry with truncated and tandem subunits. J Neurosci 2003, 23: 1151–1158.

    PubMed  CAS  Google Scholar 

  4. Qiu S, Hua YL, Yang F, Chen YZ, Luo JH. Subunit assembly of N-methyl-d-aspartate receptors analyzed by fluorescence resonance energy transfer. J Biol Chem 2005, 280: 24923–24930.

    Article  PubMed  CAS  Google Scholar 

  5. Papadakis M, Hawkins LM, Stephenson FA. Appropriate NR1-NR1 disulfide-linked homodimer formation is requisite for efficient expression of functional, cell surface N-methyl-D-aspartate NR1/NR2 receptors. J Biol Chem 2004, 279: 14703–14712.

    Article  PubMed  CAS  Google Scholar 

  6. Lee CH, Gouaux E. Amino terminal domains of the NMDA receptor are organized as local heterodimers. PLoS One 2011, 6: e19180.

    Article  PubMed  CAS  Google Scholar 

  7. Riou M, Stroebel D, Edwardson JM, Paoletti P. An alternating GluN1-2-1-2 subunit arrangement in mature NMDA receptors. PLoS One 2012, 7: e35134.

    Article  PubMed  CAS  Google Scholar 

  8. Furukawa H, Singh SK, Mancusso R, Gouaux E. Subunit arrangement and function in NMDA receptors. Nature 2005, 438: 185–192.

    Article  PubMed  CAS  Google Scholar 

  9. Kumar J, Schuck P, Mayer ML. Structure and assembly mechanism for heteromeric kainate receptors. Neuron 2011, 71: 319–331.

    Article  PubMed  CAS  Google Scholar 

  10. Qiu S, Zhang XM, Cao JY, Yang W, Yan YG, Shan L, et al. An endoplasmic reticulum retention signal located in the extracellular amino-terminal domain of the NR2A subunit of N-methyl-d-aspartate receptors. J Biol Chem 2009, 284: 20285–20298.

    Article  PubMed  CAS  Google Scholar 

  11. Cao JY, Qiu S, Zhang J, Wang JJ, Zhang XM, Luo JH. Transmembrane region of N-methyl-d-aspartate receptor (NMDAR) subunit is required for receptor subunit assembly. J Biol Chem 2011, 286: 27698–27705.

    Article  PubMed  CAS  Google Scholar 

  12. Luo JH, Fu ZY, Losi G, Kim BG, Prybylowski K, Vissel B, et al. Functional expression of distinct NMDA channel subunits tagged with green fluorescent protein in hippocampal neurons in culture. Neuropharmacology 2002, 42: 306–318.

    Article  PubMed  CAS  Google Scholar 

  13. Yang W, Zheng C, Song Q, Yang X, Qiu S, Liu C, et al. A Three amino acid tail following the TM4 region of the N-methyl-D-aspartate receptor (NR) 2 subunits is sufficient to overcome endoplasmic reticulum retention of NR1-1a subunit. J Biol Chem 2007, 282: 9269–9278.

    Article  PubMed  CAS  Google Scholar 

  14. Erickson MG, Alseikhan BA, Peterson BZ, Yue DT. Preassociation of calmodulin with voltage-gated Ca2+ channels revealed by FRET in single living cells. Neuron 2001, 31: 973–985.

    Article  PubMed  CAS  Google Scholar 

  15. Erickson MG, Liang H, Mori MX, Yue DT. FRET two-hybrid mapping reveals function and location of L-type Ca2+ channel CaM preassociation. Neuron 2003, 39: 97–107.

    Article  PubMed  CAS  Google Scholar 

  16. Saglietti L, Dequidt C, Kamieniarz K, Rousset M-C, Valnegri P, Thoumine O, et al. Extracellular interactions between GluR2 and N-cadherin in spine regulation. Neuron 2007, 54: 461–477.

    Article  PubMed  CAS  Google Scholar 

  17. Kuusinen A, Abele R, Madden DR, Keinänen K. Oligomerization and ligand-binding properties of the ectodomain of the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor subunit GluRD. J Biol Chem 1999, 274: 28937–28943.

    Article  PubMed  CAS  Google Scholar 

  18. Wells GB, Lin L, Jeanclos EM, Anand R. Assembly and ligand binding properties of the water-soluble extracellular domains of the glutamate receptor 1 subunit. J Biol Chem 2001, 276: 3031–3036.

    Article  PubMed  CAS  Google Scholar 

  19. Jin R, Singh SK, Gu S, Furukawa H, Sobolevsky AI, Zhou J, et al. Crystal structure and association behaviour of the GluR2 amino-terminal domain. EMBO J 2009, 28: 1812–1823.

    Article  PubMed  CAS  Google Scholar 

  20. Ayalon G, Segev E, Elgavish S, Stern-Bach Y. Two regions in the N-terminal domain of ionotropic glutamate receptor 3 form the subunit oligomerization interfaces that control subtype-specific receptor assembly. J Biol Chem 2005, 280: 15053–15060.

    Article  PubMed  CAS  Google Scholar 

  21. Ayalon G, Stern-Bach Y. Functional assembly of AMPA and kainate receptors is mediated by several discrete proteinprotein interactions. Neuron 2001, 31: 103–113.

    Article  PubMed  CAS  Google Scholar 

  22. Meddows E, Le Bourdellès B, Grimwood S, Wafford K, Sandhu S, Whiting P, et al. Identification of molecular determinants that are important in the assembly of N-methyld-aspartate receptors. J Biol Chem 2001, 276: 18795–18803.

    Article  PubMed  CAS  Google Scholar 

  23. Karakas E, Simorowski N, Furukawa H. Structure of the zincbound amino-terminal domain of the NMDA receptor NR2B subunit. EMBO J 2009, 28: 3910–3920.

    Article  PubMed  CAS  Google Scholar 

  24. Farina AN, Blain KY, Maruo T, Kwiatkowski W, Choe S, Nakagawa T. Separation of domain contacts is required for heterotetrameric assembly of functional NMDA receptors. J Neurosci 2011, 31: 3565–3579.

    Article  PubMed  CAS  Google Scholar 

  25. Sobolevsky AI, Rosconi MP, Gouaux E. X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature 2009, 462: 745–756.

    Article  PubMed  CAS  Google Scholar 

  26. Bordoli L, Kiefer F, Arnold K, Benkert P, Battey J, Schwede T. Protein structure homology modeling using SWISS-MODEL workspace. Nat Protocols 2008, 4: 1–13.

    Article  Google Scholar 

  27. Atlason PT, Garside ML, Meddows E, Whiting P, McIlhinney RA. N-methyl-d-aspartate (NMDA) receptor subunit NR1 forms the substrate for oligomeric assembly of the NMDA receptor. J Biol Chem 2007, 282: 25299–25307.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Hong Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, XM., Lv, XY., Tang, Y. et al. Cysteine residues 87 and 320 in the amino terminal domain of NMDA receptor GluN2A govern its homodimerization but do not influence GluN2A/GluN1 heteromeric assembly. Neurosci. Bull. 29, 671–684 (2013). https://doi.org/10.1007/s12264-013-1335-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-013-1335-x

Keywords

Navigation