Skip to main content
Log in

Axonal bleb recording

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Patch-clamp recording requires direct accessibility of the cell membrane to patch pipettes and allows the investigation of ion channel properties and functions in specific cellular compartments. The cell body and relatively thick dendrites are the most accessible compartments of a neuron, due to their large diameters and therefore great membrane surface areas. However, axons are normally inaccessible to patch pipettes because of their thin structure; thus studies of axon physiology have long been hampered by the lack of axon recording methods. Recently, a new method of patch-clamp recording has been developed, enabling direct and tight-seal recording from cortical axons. These recordings are performed at the enlarged structure (axonal bleb) formed at the cut end of an axon after slicing procedures. This method has facilitated studies of the mechanisms underlying the generation and propagation of the main output signal, the action potential, and led to the finding that cortical neurons communicate not only in action potential-mediated digital mode but also in membrane potential-dependent analog mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hu W, Tian C, Li T, Yang M, Hou H, Shu Y. Distinct contributions of Na(v)1.6 and Na(v)1.2 in action potential initiation and back-propagation. Nat Neurosci 2009, 12: 996–1002.

    Article  PubMed  CAS  Google Scholar 

  2. Shu Y, Duque A, Yu Y, Haider B, McCormick DA. Properties of action-potential initiation in neocortical pyramidal cells: evidence from whole cell axon recordings. J Neurophysiol 2007, 97: 746–760.

    Article  PubMed  Google Scholar 

  3. Shu Y, Hasenstaub A, Duque A, Yu Y, McCormick DA. Modulation of intracortical synaptic potentials by presynaptic somatic membrane potential. Nature 2006, 441: 761–765.

    Article  PubMed  CAS  Google Scholar 

  4. Shu Y, Yu Y, Yang J, McCormick DA. Selective control of cortical axonal spikes by a slowly inactivating K+ current. Proc Natl Acad Sci U S A 2007, 104: 11453–11458.

    Article  PubMed  CAS  Google Scholar 

  5. Debanne D, Campanac E, Bialowas A, Carlier E, Alcaraz G. Axon physiology. Physiol Rev 2011, 91: 555–602.

    Article  PubMed  CAS  Google Scholar 

  6. Kole MH, Stuart GJ. Signal processing in the axon initial segment. Neuron 2012, 73: 235–247.

    Article  PubMed  CAS  Google Scholar 

  7. Rasband MN. The axon initial segment and the maintenance of neuronal polarity. Nat Rev Neurosci 2010, 11: 552–562.

    Article  PubMed  CAS  Google Scholar 

  8. Cole KS. Membranes, Ions and Impulses. Berkeley: University of California Press, 1968.

    Google Scholar 

  9. Hodgkin AL, Huxley AF, Katz B. Measurement of current-voltage relations in the membrane of the giant axon of Loligo. J Physiol 1952, 116: 424–448.

    PubMed  CAS  Google Scholar 

  10. Marmont G. Studies on the axon membrane; a new method. J Cell Physiol 1949, 34: 351–382.

    Article  PubMed  CAS  Google Scholar 

  11. Young JZ. The giant nerve fibres and epistellar body of cephalopods. Q J Microsc Sci 1936, 78: 367–386.

    Google Scholar 

  12. Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 1952, 117: 500–544.

    PubMed  CAS  Google Scholar 

  13. Neher E, Sakmann B. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 1976, 260: 799–802.

    Article  PubMed  CAS  Google Scholar 

  14. Borst JG, Helmchen F, Sakmann B. Pre- and postsynaptic whole-cell recordings in the medial nucleus of the trapezoid body of the rat. J Physiol 1995, 489(Pt 3): 825–840.

    PubMed  CAS  Google Scholar 

  15. Forsythe ID. Direct patch recording from identified presynaptic terminals mediating glutamatergic EPSCs in the rat CNS, in vitro. J Physiol 1994, 479(Pt 3): 381–387.

    PubMed  Google Scholar 

  16. Schneggenburger R, Meyer AC, Neher E. Released fraction and total size of a pool of immediately available transmitter quanta at a calyx synapse. Neuron 1999, 23: 399–409.

    Article  PubMed  CAS  Google Scholar 

  17. Geiger JR, Jonas P. Dynamic control of presynaptic Ca2+ inflow by fast-inactivating K+ channels in hippocampal mossy fiber boutons. Neuron 2000, 28: 927–939.

    Article  PubMed  CAS  Google Scholar 

  18. Colbert CM, Pan E. Ion channel properties underlying axonal action potential initiation in pyramidal neurons. Nat Neurosci 2002, 5: 533–538.

    Article  PubMed  CAS  Google Scholar 

  19. Kole MH, Ilschner SU, Kampa BM, Williams SR, Ruben PC, Stuart GJ. Action potential generation requires a high sodium channel density in the axon initial segment. Nat Neurosci 2008, 11: 178–186.

    Article  PubMed  CAS  Google Scholar 

  20. Stuart G, Schiller J, Sakmann B. Action potential initiation and propagation in rat neocortical pyramidal neurons. J Physiol 1997, 505(Pt 3): 617–632.

    Article  PubMed  CAS  Google Scholar 

  21. Stuart G, Spruston N, Sakmann B, Hausser M. Action potential initiation and backpropagation in neurons of the mammalian CNS. Trends Neurosci 1997, 20: 125–131.

    Article  PubMed  CAS  Google Scholar 

  22. Schneggenburger R, Forsythe ID. The calyx of Held. Cell Tissue Res 2006, 326: 311–337.

    Article  PubMed  Google Scholar 

  23. Acsady L, Kamondi A, Sik A, Freund T, Buzsaki G. GABAergic cells are the major postsynaptic targets of mossy fibers in the rat hippocampus. J Neurosci 1998, 18: 3386–3403.

    PubMed  CAS  Google Scholar 

  24. Amaral DG, Dent JA. Development of the mossy fibers of the dentate gyrus: I. A light and electron microscopic study of the mossy fibers and their expansions. J Comp Neurol 1981, 195: 51–86.

    Article  PubMed  CAS  Google Scholar 

  25. Blackstad TW, Kjaerheim A. Special axo-dendritic synapses in the hippocampal cortex: electron and light microscopic studies on the layer of mossy fibers. J Comp Neurol 1961, 117: 133–159.

    Article  PubMed  CAS  Google Scholar 

  26. Alle H, Geiger JR. Combined analog and action potential coding in hippocampal mossy fibers. Science 2006, 311: 1290–1293.

    Article  PubMed  CAS  Google Scholar 

  27. Alle H, Roth A, Geiger JR. Energy-efficient action potentials in hippocampal mossy fibers. Science 2009, 325: 1405–1408.

    Article  PubMed  CAS  Google Scholar 

  28. Bischofberger J, Engel D, Li L, Geiger JR, Jonas P. Patch-clamp recording from mossy fiber terminals in hippocampal slices. Nat Protoc 2006, 1: 2075–2081.

    Article  PubMed  CAS  Google Scholar 

  29. Ramon y Cajal S. Degeneration and Regeneration of the Nervous System. New York: Oxford University Press, American Branch, 1928.

    Google Scholar 

  30. Erturk A, Hellal F, Enes J, Bradke F. Disorganized microtubules underlie the formation of retraction bulbs and the failure of axonal regeneration. J Neurosci 2007, 27: 9169–9180.

    Article  PubMed  Google Scholar 

  31. Hill CE, Beattie MS, Bresnahan JC. Degeneration and sprouting of identified descending supraspinal axons after contusive spinal cord injury in the rat. Exp Neurol 2001, 171: 153–169.

    Article  PubMed  CAS  Google Scholar 

  32. Li Y, Raisman G. Sprouts from cut corticospinal axons persist in the presence of astrocytic scarring in long-term lesions of the adult rat spinal cord. Exp Neurol 1995, 134: 102–111.

    Article  PubMed  CAS  Google Scholar 

  33. McCormick DA, Shu Y, Yu Y. Neurophysiology: Hodgkin and Huxley model — still standing? Nature 2007, 445: E1–2; discussion E2-3.

    Article  PubMed  CAS  Google Scholar 

  34. Khaliq ZM, Raman IM. Axonal propagation of simple and complex spikes in cerebellar Purkinje neurons. J Neurosci 2005, 25: 454–463.

    Article  PubMed  CAS  Google Scholar 

  35. Monsivais P, Clark BA, Roth A, Hausser M. Determinants of action potential propagation in cerebellar Purkinje cell axons. J Neurosci 2005, 25: 464–472.

    Article  PubMed  CAS  Google Scholar 

  36. Storm JF. Temporal integration by a slowly inactivating K+ current in hippocampal neurons. Nature 1988, 336: 379–381.

    Article  PubMed  CAS  Google Scholar 

  37. Kole MH, Letzkus JJ, Stuart GJ. Axon initial segment Kv1 channels control axonal action potential waveform and synaptic efficacy. Neuron 2007, 55: 633–647.

    Article  PubMed  CAS  Google Scholar 

  38. Zhu J, Jiang M, Yang M, Hou H, Shu Y. Membrane potential-dependent modulation of recurrent inhibition in rat neocortex. PLoS Biol 2011, 9: e1001032.

    Article  PubMed  CAS  Google Scholar 

  39. Palmer LM, Stuart GJ. Site of action potential initiation in layer 5 pyramidal neurons. J Neurosci 2006, 26: 1854–1863.

    Article  PubMed  CAS  Google Scholar 

  40. Popovic MA, Foust AJ, McCormick DA, Zecevic D. The spatiotemporal characteristics of action potential initiation in layer 5 pyramidal neurons: a voltage imaging study. J Physiol 2011, 589: 4167–4187.

    PubMed  CAS  Google Scholar 

  41. Kim S, Guzman SJ, Hu H, Jonas P. Active dendrites support efficient initiation of dendritic spikes in hippocampal CA3 pyramidal neurons. Nat Neurosci 2012, 15: 600–606.

    Article  PubMed  CAS  Google Scholar 

  42. Atherton JF, Wokosin DL, Ramanathan S, Bevan MD. Autonomous initiation and propagation of action potentials in neurons of the subthalamic nucleus. J Physiol 2008, 586: 5679–5700.

    Article  PubMed  CAS  Google Scholar 

  43. Schmidt-Hieber C, Jonas P, Bischofberger J. Action potential initiation and propagation in hippocampal mossy fibre axons. J Physiol 2008, 586: 1849–1857.

    Article  PubMed  CAS  Google Scholar 

  44. Chen N, Yu J, Qian H, Ge R, Wang JH. Axons amplify somatic incomplete spikes into uniform amplitudes in mouse cortical pyramidal neurons. PLoS One 2010, 5: e11868.

    Article  PubMed  Google Scholar 

  45. Dodge FA Jr, Cooley JW. Action potential of the motoneuron. IBM J Res Dev 1973, 17: 219–229.

    Article  Google Scholar 

  46. Lorincz A, Nusser Z. Cell-type-dependent molecular composition of the axon initial segment. J Neurosci 2008, 28: 14329–14340.

    Article  PubMed  CAS  Google Scholar 

  47. Mainen ZF, Joerges J, Huguenard JR, Sejnowski TJ. A model of spike initiation in neocortical pyramidal neurons. Neuron 1995, 15: 1427–1439.

    Article  PubMed  CAS  Google Scholar 

  48. Moore JW, Stockbridge N, Westerfield M. On the site of impulse initiation in a neurone. J Physiol 1983, 336: 301–311.

    PubMed  CAS  Google Scholar 

  49. Rapp M, Yarom Y, Segev I. Modeling back propagating action potential in weakly excitable dendrites of neocortical pyramidal cells. Proc Natl Acad Sci U S A 1996, 93: 11985–11990.

    Article  PubMed  CAS  Google Scholar 

  50. Schmidt-Hieber C, Bischofberger J. Fast sodium channel gating supports localized and efficient axonal action potential initiation. J Neurosci 2010, 30: 10233–10242.

    Article  PubMed  CAS  Google Scholar 

  51. Grubb MS, Shu Y, Kuba H, Rasband MN, Wimmer VC, Bender KJ. Short- and long-term plasticity at the axon initial segment. J Neurosci 2011, 31: 16049–16055.

    Article  PubMed  CAS  Google Scholar 

  52. Arellano JI, DeFelipe J, Munoz A. PSA-NCAM immunoreactivity in chandelier cell axon terminals of the human temporal cortex. Cereb Cortex 2002, 12: 617–624.

    Article  PubMed  Google Scholar 

  53. DeFelipe J, Arellano JI, Gomez A, Azmitia EC, Munoz A. Pyramidal cell axons show a local specialization for GABA and 5-HT inputs in monkey and human cerebral cortex. J Comp Neurol 2001, 433: 148–155.

    Article  PubMed  CAS  Google Scholar 

  54. Kullmann DM, Ruiz A, Rusakov DM, Scott R, Semyanov A, Walker MC. Presynaptic, extrasynaptic and axonal GABAA receptors in the CNS: where and why? Prog Biophys Mol Biol 2005, 87: 33–46.

    Article  PubMed  CAS  Google Scholar 

  55. Pugh JR, Jahr CE. Axonal GABAA receptors increase cerebellar granule cell excitability and synaptic activity. J Neurosci 2011, 31: 565–574.

    Article  PubMed  CAS  Google Scholar 

  56. Christie JM, Jahr CE. Selective expression of ligand-gated ion channels in L5 pyramidal cell axons. J Neurosci 2009, 29: 11441–11450.

    Article  PubMed  CAS  Google Scholar 

  57. Sasaki T, Matsuki N, Ikegaya Y. Action-potential modulation during axonal conduction. Science 2011, 331: 599–601.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yousheng Shu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, W., Shu, Y. Axonal bleb recording. Neurosci. Bull. 28, 342–350 (2012). https://doi.org/10.1007/s12264-012-1247-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-012-1247-1

Keywords

Navigation