Skip to main content

Advertisement

Log in

Proton production, regulation and pathophysiological roles in the mammalian brain

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

The recent demonstration of proton signaling in C. elegans muscle contraction suggests a novel mechanism for proton-based intercellular communication and has stimulated enthusiasm for exploring proton signaling in higher organisms. Emerging evidence indicates that protons are produced and regulated in localized space and time. Furthermore, identification of proton regulators and sensors in the brain leads to the speculation that proton production and regulation may be of major importance for both physiological and pathological functions ranging from nociception to learning and memory. Extracellular protons may play a role in signal transmission by not only acting on adjacent cells but also affecting the cell from which they were released. In this review, we summarize the upstream and downstream pathways of proton production and regulation in the mammalian brain, with special emphasis on the proton extruders and sensors that are critical in the homeostatic regulation of pH, and discuss their potential roles in proton signaling under normal and pathophysiological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Casey JR, Grinstein S, Orlowski J. Sensors and regulators of intracellular pH. Nat Rev Mol Cell Biol 2010, 11: 50–61.

    Article  PubMed  CAS  Google Scholar 

  2. Bell SM, Schreiner CM, Schultheis PJ, Miller ML, Evans RL, Vorhees CV, et al. Targeted disruption of the murine Nhe1 locus induces ataxia, growth retardation, and seizures. Am J Physiol 1999, 276: C788–795.

    PubMed  CAS  Google Scholar 

  3. Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH, Magistretti PJ, et al. Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 2011, 144: 810–823.

    Article  PubMed  CAS  Google Scholar 

  4. Wemmie JA, Chen J, Askwith CC, Hruska-Hageman AM, Price MP, Nolan BC, et al. The acid-activated ion channel ASIC contributes to synaptic plasticity, learning, and memory. Neuron 2002, 34: 463–477.

    Article  PubMed  CAS  Google Scholar 

  5. Pfeiffer J, Johnson D, Nehrke K. Oscillatory transepithelial H+ flux regulates a rhythmic behavior in C. elegans. Curr Biol 2008, 18: 297–302.

    CAS  Google Scholar 

  6. Beg AA, Ernstrom GG, Nix P, Davis MW, Jorgensen EM. Protons act as a transmitter for muscle contraction in C.elegans. Cell 2008, 132: 149–160.

    Article  PubMed  CAS  Google Scholar 

  7. Waldmann R, Champigny G, Bassilana F, Heurteaux C, Lazdunski M. A proton-gated cation channel involved in acid-sensing. Nature 1997, 386: 173–177.

    Article  PubMed  CAS  Google Scholar 

  8. DeVries SH. Exocytosed protons feedback to suppress the Ca2+ current in mammalian cone photoreceptors. Neuron 2001, 32: 1107–1117.

    Article  PubMed  CAS  Google Scholar 

  9. Palma A, Li L, Chen XJ, Pappone P, McNamee M. Effects of pH on acetylcholine receptor function. J Membr Biol 1991, 120: 67–73.

    Article  PubMed  CAS  Google Scholar 

  10. Tang CM, Dichter M, Morad M. Modulation of the N-methyl-D-aspartate channel by extracellular H+. Proc Natl Acad Sci U S A 1990, 87: 6445–6449.

    Article  PubMed  CAS  Google Scholar 

  11. Traynelis SF, Cull-Candy SG. Proton inhibition of N-methyl-D-aspartate receptors in cerebellar neurons. Nature 1990, 345: 347–350.

    Article  PubMed  CAS  Google Scholar 

  12. Kaila K. Ionic basis of GABAA receptor channel function in the nervous system. Prog Neurobiol 1994, 42: 489–537.

    Article  PubMed  CAS  Google Scholar 

  13. Siesjo BK, Katsura K, Mellergard P, Ekholm A, Lundgren J, Smith ML. Acidosis-related brain damage. Prog Brain Res 1993, 96: 23–48.

    PubMed  CAS  Google Scholar 

  14. Kraut JA, Madias NE. Metabolic acidosis: pathophysiology, diagnosis and management. Nat Rev Nephrol 2010, 6: 274–285.

    Article  PubMed  CAS  Google Scholar 

  15. Alberti KG, Cuthbert C. The hydrogen ion in normal metabolism: a review. Ciba Found Symp 1982, 87: 1–19.

    PubMed  CAS  Google Scholar 

  16. Hochachka PW, Mommsen TP. Protons and anaerobiosis. Science 1983, 219: 1391–1397.

    Article  PubMed  CAS  Google Scholar 

  17. Grinstein S, Furuya W, Biggar WD. Cytoplasmic pH regulation in normal and abnormal neutrophils. Role of superoxide generation and Na+/H+ exchange. J Biol Chem 1986, 261: 512–514.

    PubMed  CAS  Google Scholar 

  18. Capasso M, DeCoursey TE, Dyer MJ. pH regulation and beyond: unanticipated functions for the voltage-gated proton channel, HVCN1. Trends Cell Biol 2011, 21: 20–28.

    Article  PubMed  CAS  Google Scholar 

  19. Demaurex N, El Chemaly A. Physiological roles of voltage-gated proton channels in leukocytes. J Physiol 2010, 588: 4659–4665.

    Article  PubMed  CAS  Google Scholar 

  20. Rehncrona S. Brain acidosis. Ann Emerg Med 1985, 14: 770–776.

    Article  PubMed  CAS  Google Scholar 

  21. Dietrich CJ, Morad M. Synaptic acidification enhances GABAA signaling. J Neurosci 2010, 30: 16044–16052.

    Article  PubMed  CAS  Google Scholar 

  22. Chesler M. Regulation and modulation of pH in the brain. Physiol Rev 2003, 83: 1183–1221.

    PubMed  CAS  Google Scholar 

  23. Swietach P, Zaniboni M, Stewart AK, Rossini A, Spitzer KW, Vaughan-Jones RD. Modelling intracellular H+ ion diffusion. Prog Biophys Mol Biol 2003, 83: 69–100.

    Article  PubMed  CAS  Google Scholar 

  24. Vaughan-Jones RD, Peercy BE, Keener JP, Spitzer KW. Intrinsic H+ ion mobility in the rabbit ventricular myocyte. J Physiol 2002, 541: 139–158.

    Article  PubMed  CAS  Google Scholar 

  25. Spitzer KW, Ershler PR, Skolnick RL, Vaughan-Jones RD. Generation of intracellular pH gradients in single cardiac myocytes with a microperfusion system. Am J Physiol Heart Circ Physiol 2000, 278: H1371–1382.

    PubMed  CAS  Google Scholar 

  26. Stewart AK, Boyd CA, Vaughan-Jones RD. A novel role for carbonic anhydrase: cytoplasmic pH gradient dissipation in mouse small intestinal enterocytes. J Physiol 1999, 516 (Pt 1): 209–217.

    Article  PubMed  CAS  Google Scholar 

  27. Forgac M. Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat Rev Mol Cell Biol 2007, 8: 917–929.

    Article  PubMed  CAS  Google Scholar 

  28. Lee JH, Yu WH, Kumar A, Lee S, Mohan PS, Peterhoff CM, et al. Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 2010, 141: 1146–1158.

    Article  PubMed  CAS  Google Scholar 

  29. Morel N, Dedieu JC, Philippe JM. Specific sorting of the a1 iso-form of the V-H+ATPase a subunit to nerve terminals where it associates with both synaptic vesicles and the presynaptic plasma membrane. J Cell Sci 2003, 116: 4751–4762.

    Article  PubMed  CAS  Google Scholar 

  30. Zhang Z, Nguyen KT, Barrett EF, David G. Vesicular ATPase inserted into the plasma membrane of motor terminals by exocytosis alkalinizes cytosolic pH and facilitates endocytosis. Neuron 2010, 68: 1097–1108.

    Article  PubMed  CAS  Google Scholar 

  31. Cardone RA, Casavola V, Reshkin SJ. The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis. Nat Rev Cancer 2005, 5: 786–795.

    Article  PubMed  CAS  Google Scholar 

  32. Denker SP, Huang DC, Orlowski J, Furthmayr H, Barber DL. Direct binding of the Na—H exchanger NHE1 to ERM proteins regulates the cortical cytoskeleton and cell shape independently of H+ translocation. Mol Cell 2000, 6: 1425–1436.

    Article  PubMed  CAS  Google Scholar 

  33. Denker SP, Barber DL. Cell migration requires both ion translocation and cytoskeletal anchoring by the Na-H exchanger NHE1. J Cell Biol 2002, 159: 1087–1096.

    Article  PubMed  CAS  Google Scholar 

  34. Stock C, Schwab A. Role of the Na/H exchanger NHE1 in cell migration. Acta Physiol (Oxf) 2006, 187: 149–157.

    Article  CAS  Google Scholar 

  35. Stuwe L, Muller M, Fabian A, Waning J, Mally S, Noel J, et al. pH dependence of melanoma cell migration: protons extruded by NHE1 dominate protons of the bulk solution. J Physiol 2007, 585: 351–360.

    Article  PubMed  CAS  Google Scholar 

  36. Meima ME, Mackley JR, Barber DL. Beyond ion translocation: structural functions of the sodium-hydrogen exchanger isoform-1. Curr Opin Nephrol Hypertens 2007, 16: 365–372.

    Article  PubMed  CAS  Google Scholar 

  37. Morris ME, Felmlee MA. Overview of the proton-coupled MCT (SLC16A) family of transporters: characterization, function and role in the transport of the drug of abuse gamma-hydroxybutyric acid. AAPS J 2008, 10: 311–321.

    Article  PubMed  CAS  Google Scholar 

  38. Pierre K, Pellerin L. Monocarboxylate transporters in the central nervous system: distribution, regulation and function. J Neurochem 2005, 94: 1–14.

    Article  PubMed  CAS  Google Scholar 

  39. Halestrap AP, Price NT. The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem J 1999, 343(Pt 2): 281–299.

    Article  PubMed  CAS  Google Scholar 

  40. Vandenberg JI, Metcalfe JC, Grace AA. Mechanisms of pHi recovery after global ischemia in the perfused heart. Circ Res 1993, 72: 993–1003.

    PubMed  CAS  Google Scholar 

  41. Alberini CM. Transcription factors in long-term memory and synaptic plasticity. Physiol Rev 2009, 89: 121–145.

    Article  PubMed  CAS  Google Scholar 

  42. Fields RD, Stevens-Graham B. Neuroscience — New insights into neuron-glia communication. Science 2002, 298: 556–562.

    Article  PubMed  CAS  Google Scholar 

  43. Thomas RC, Meech RW. Hydrogen ion currents and intracellular pH in depolarized voltage-clamped snail neurones. Nature 1982, 299: 826–828.

    Article  PubMed  CAS  Google Scholar 

  44. Ramsey IS, Moran MM, Chong JA, Clapham DE. A voltage-gated proton-selective channel lacking the pore domain. Nature 2006, 440: 1213–1216.

    Article  PubMed  CAS  Google Scholar 

  45. Sasaki M, Takagi M, Okamura Y. A voltage sensor-domain protein is a voltage-gated proton channel. Science 2006, 312: 589–592.

    Article  PubMed  CAS  Google Scholar 

  46. Decoursey TE. Voltage-gated proton channels and other proton transfer pathways. Physiol Rev 2003, 83: 475–579.

    PubMed  CAS  Google Scholar 

  47. Eder C, DeCoursey TE. Voltage-gated proton channels in microglia. Prog Neurobiol 2001, 64: 277–305.

    Article  PubMed  CAS  Google Scholar 

  48. Lishko PV, Botchkina IL, Fedorenko A, Kirichok Y. Acid extrusion from human spermatozoa is mediated by flagellar voltage-gated proton channel. Cell 2010, 140: 327–337.

    Article  PubMed  CAS  Google Scholar 

  49. Iovannisci D, Illek B, Fischer H. Function of the HVCN1 proton channel in airway epithelia and a naturally occurring mutation, M91T. J Gen Physiol 2010, 136: 35–46.

    Article  PubMed  CAS  Google Scholar 

  50. Cheng YM, Kelly T, Church J. Potential contribution of a voltageactivated proton conductance to acid extrusion from rat hippocampal neurons. Neuroscience 2008, 151: 1084–1098.

    Article  PubMed  CAS  Google Scholar 

  51. DeCoursey TE, Morgan D, Cherny VV. The voltage dependence of NADPH oxidase reveals why phagocytes need proton channels. Nature 2003, 422: 531–534.

    Article  PubMed  CAS  Google Scholar 

  52. Henderson LM, Chappell JB, Jones OT. The superoxide-generating NADPH oxidase of human neutrophils is electrogenic and associated with an H+ channel. Biochem J 1987, 246: 325–329.

    PubMed  CAS  Google Scholar 

  53. Pantazis A, Keegan P, Postma M, Schwiening CJ. The effect of neuronal morphology and membrane-permeant weak acid and base on the dissipation of depolarization-induced pH gradients in snail neurons. Pflugers Arch 2006, 452: 175–187.

    Article  PubMed  CAS  Google Scholar 

  54. Schwiening CJ, Willoughby D. Depolarization-induced pH microdomains and their relationship to calcium transients in isolated snail neurones. J Physiol 2002, 538 (Pt 2): 371–382.

    Article  PubMed  CAS  Google Scholar 

  55. Lishko PV, Kirichok Y. The role of Hv1 and CatSper channels in sperm activation. J Physiol 2010, 588: 4667–4672.

    Article  PubMed  CAS  Google Scholar 

  56. Huang RQ, Chen Z, Dillon GH. Molecular basis for modulation of recombinant alpha1beta2gamma2 GABAA receptors by protons. J Neurophysiol 2004, 92: 883–894.

    Article  PubMed  CAS  Google Scholar 

  57. Wilkins ME, Hosie AM, Smart TG. Identification of a beta subunit TM2 residue mediating proton modulation of GABA type A receptors. J Neurosci 2002, 22: 5328–5333.

    PubMed  CAS  Google Scholar 

  58. Li YF, Wu LJ, Li Y, Xu L, Xu TL. Mechanisms of H+ modulation of glycinergic response in rat sacral dorsal commissural neurons. J Physiol 2003, 552: 73–87.

    Article  PubMed  CAS  Google Scholar 

  59. Chen Z, Dillon GH, Huang R. Molecular determinants of proton modulation of glycine receptors. J Biol Chem 2004, 279: 876–883.

    Article  PubMed  CAS  Google Scholar 

  60. Traynelis SF, Cull-Candy SG. Pharmacological properties and H+ sensitivity of excitatory amino acid receptor channels in rat cerebellar granule neurones. J Physiol 1991, 433: 727–763.

    PubMed  CAS  Google Scholar 

  61. Krishtal OA, Pidoplichko VI. Receptor for protons in the membrane of sensory neurons. Brain Res 1981, 214: 150–154.

    Article  PubMed  CAS  Google Scholar 

  62. Wang YY, Chang RB, Liman ER. TRPA1 is a component of the nociceptive response to CO2. J Neurosci 2010, 30: 12958–12963.

    Article  PubMed  CAS  Google Scholar 

  63. Huang AL, Chen X, Hoon MA, Chandrashekar J, Guo W, Trankner D, et al. The cells and logic for mammalian sour taste detection. Nature 2006, 442: 934–938.

    Article  PubMed  CAS  Google Scholar 

  64. Lingueglia E. Acid-sensing ion channels in sensory perception. J Biol Chem 2007, 282: 17325–17329.

    Article  PubMed  CAS  Google Scholar 

  65. Wemmie JA, Price MP, Welsh MJ. Acid-sensing ion channels: advances, questions and therapeutic opportunities. Trends Neurosci 2006, 29: 578–586.

    Article  PubMed  CAS  Google Scholar 

  66. Xiong ZG, Zhu XM, Chu XP, Minami M, Hey J, Wei WL, et al. Neuroprotection in ischemia: blocking calcium-permeable acidsensing ion channels. Cell 2004, 118: 687–698.

    Article  PubMed  CAS  Google Scholar 

  67. Sherwood TW, Lee KG, Gormley MG, Askwith CC. Heteromeric acid-sensing ion channels (ASICs) composed of ASIC2b and ASIC1a display novel channel properties and contribute to acidosisinduced neuronal death. J Neurosci 2011, 31: 9723–9734.

    Article  PubMed  CAS  Google Scholar 

  68. Gonzales EB, Kawate T, Gouaux E. Pore architecture and ion sites in acid-sensing ion channels and P2X receptors. Nature 2009, 460: 599–604.

    Article  PubMed  CAS  Google Scholar 

  69. Jasti J, Furukawa H, Gonzales EB, Gouaux E. Structure of acidsensing ion channel 1 at 1.9 A resolution and low pH. Nature 2007, 449: 316–323.

    Article  PubMed  CAS  Google Scholar 

  70. Zha XM, Wemmie JA, Green SH, Welsh MJ. Acid-sensing ion channel 1a is a postsynaptic proton receptor that affects the density of dendritic spines. Proc Natl Acad Sci U S A 2006, 103: 16556–16561.

    Article  PubMed  CAS  Google Scholar 

  71. Wemmie JA, Askwith CC, Lamani E, Cassell MD, Freeman JH, Jr., Welsh MJ. Acid-sensing ion channel 1 is localized in brain regions with high synaptic density and contributes to fear conditioning. J Neurosci 2003, 23: 5496–5502.

    PubMed  CAS  Google Scholar 

  72. Wemmie JA, Coryell MW, Askwith CC, Lamani E, Leonard AS, Sigmund CD, et al. Overexpression of acid-sensing ion channel 1a in transgenic mice increases acquired fear-related behavior. Proc Natl Acad Sci U S A 2004, 101: 3621–3626.

    Article  PubMed  CAS  Google Scholar 

  73. Friese MA, Craner MJ, Etzensperger R, Vergo S, Wemmie JA, Welsh MJ, et al. Acid-sensing ion channel-1 contributes to axonal degeneration in autoimmune inflammation of the central nervous system. Nat Med 2007, 13: 1483–1489.

    Article  PubMed  CAS  Google Scholar 

  74. Gao J, Duan B, Wang DG, Deng XH, Zhang GY, Xu L, et al. Coupling between NMDA receptor and acid-sensing ion channel contributes to ischemic neuronal death. Neuron 2005, 48: 635–646.

    Article  PubMed  CAS  Google Scholar 

  75. Duan B, Wang YZ, Yang T, Chu XP, Yu Y, Huang Y, et al. Extracellular spermine exacerbates ischemic neuronal injury through sensitization of ASIC1a channels to extracellular acidosis. J Neurosci 2011, 31: 2101–2112.

    Article  PubMed  CAS  Google Scholar 

  76. Duan B, Wu LJ, Yu YQ, Ding Y, Jing L, Xu L, et al. Upregulation of acid-sensing ion channel ASIC1a in spinal dorsal horn neurons contributes to inflammatory pain hypersensitivity. J Neurosci 2007, 27: 11139–11148.

    Article  PubMed  CAS  Google Scholar 

  77. Ziemann AE, Schnizler MK, Albert GW, Severson MA, Howard MA 3rd, Welsh MJ, et al. Seizure termination by acidosis depends on ASIC1a. Nat Neurosci 2008, 11: 816–822.

    Article  PubMed  CAS  Google Scholar 

  78. Ziemann AE, Allen JE, Dahdaleh NS, Drebot, II, Coryell MW, Wunsch AM, et al. The amygdala is a chemosensor that detects carbon dioxide and acidosis to elicit fear behavior. Cell 2009, 139: 1012–1021.

    Article  PubMed  CAS  Google Scholar 

  79. Yu Y, Chen Z, Li WG, Cao H, Feng EG, Yu F, et al. A nonproton ligand sensor in the acid-sensing ion channel. Neuron 2010, 68: 61–72.

    Article  PubMed  CAS  Google Scholar 

  80. Bohlen CJ, Chesler AT, Sharif-Naeini R, Medzihradszky KF, Zhou S, King D, et al. A heteromeric Texas coral snake toxin targets acidsensing ion channels to produce pain. Nature 2011, 479: 410–414.

    Article  PubMed  CAS  Google Scholar 

  81. Yarmolinsky DA, Zuker CS, Ryba NJ. Common sense about taste: from mammals to insects. Cell 2009, 139: 234–244.

    Article  PubMed  CAS  Google Scholar 

  82. Chang RB, Waters H, Liman ER. A proton current drives action potentials in genetically identified sour taste cells. Proc Natl Acad Sci U S A 2010, 107: 22320–22325.

    Article  PubMed  CAS  Google Scholar 

  83. Luo M, Sun L, Hu J. Neural detection of gases — carbon dioxide, oxygen — in vertebrates and invertebrates. Curr Opin Neurobiol 2009, 19: 354–361.

    Article  PubMed  CAS  Google Scholar 

  84. Kwon JY, Dahanukar A, Weiss LA, Carlson JR. The molecular basis of CO2 reception in Drosophila. Proc Natl Acad Sci U S A 2007, 104: 3574–3578.

    Article  PubMed  CAS  Google Scholar 

  85. Jones WD, Cayirlioglu P, Kadow IG, Vosshall LB. Two chemosensory receptors together mediate carbon dioxide detection in Drosophila. Nature 2007, 445: 86–90.

    Article  PubMed  CAS  Google Scholar 

  86. Fischler W, Kong P, Marella S, Scott K. The detection of carbonation by the Drosophila gustatory system. Nature 2007, 448: 1054–1057.

    Article  PubMed  CAS  Google Scholar 

  87. Ai M, Min S, Grosjean Y, Leblanc C, Bell R, Benton R, et al. Acid sensing by the Drosophila olfactory system. Nature 2010, 468: 691–695.

    Article  PubMed  CAS  Google Scholar 

  88. Chandrashekar J, Yarmolinsky D, von Buchholtz L, Oka Y, Sly W, Ryba NJ, et al. The taste of carbonation. Science 2009, 326: 443–445.

    Article  PubMed  CAS  Google Scholar 

  89. Trapp S, Aller MI, Wisden W, Gourine AV. A role for TASK-1 (KCNK3) channels in the chemosensory control of breathing. J Neurosci 2008, 28: 8844–8850.

    Article  PubMed  CAS  Google Scholar 

  90. Wang WZ, Chu XP, Li MH, Seeds J, Simon RP, Xiong ZG. Modulation of acid-sensing ion channel currents, acid-induced increase of intracellular Ca2+, and acidosis-mediated neuronal injury by intracellular pH. J Biol Chem 2006, 281: 29369–29378.

    Article  PubMed  CAS  Google Scholar 

  91. Miesenbock G, De Angelis DA, Rothman JE. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 1998, 394: 192–195.

    Article  PubMed  CAS  Google Scholar 

  92. Liu Y, Edwards RH. The role of vesicular transport proteins in synaptic transmission and neural degeneration. Annu Rev Neurosci 1997, 20: 125–156.

    Article  PubMed  CAS  Google Scholar 

  93. Ertel EA, Campbell KP, Harpold MM, Hofmann F, Mori Y, Perez-Reyes E, et al. Nomenclature of voltage-gated calcium channels. Neuron 2000, 25: 533–535.

    Article  PubMed  CAS  Google Scholar 

  94. Birnbaumer L, Campbell KP, Catterall WA, Harpold MM, Hofmann F, Horne WA, et al. The naming of voltage-gated calcium channels. Neuron 1994, 13: 505–506.

    Article  PubMed  CAS  Google Scholar 

  95. Palmer MJ, Hull C, Vigh J, von Gersdorff H. Synaptic cleft acidification and modulation of short-term depression by exocytosed protons in retinal bipolar cells. J Neurosci 2003, 23: 11332–11341.

    PubMed  CAS  Google Scholar 

  96. Vessey JP, Stratis AK, Daniels BA, Da Silva N, Jonz MG, Lalonde MR, et al. Proton-mediated feedback inhibition of presynaptic calcium channels at the cone photoreceptor synapse. J Neurosci 2005, 25: 4108–4117.

    Article  PubMed  CAS  Google Scholar 

  97. Chen XH, Bezprozvanny I, Tsien RW. Molecular basis of proton block of L-type Ca2+ channels. J Gen Physiol 1996, 108: 363–374.

    Article  PubMed  CAS  Google Scholar 

  98. Klockner U, Isenberg G. Calcium channel current of vascular smooth muscle cells: extracellular protons modulate gating and single channel conductance. J Gen Physiol 1994, 103: 665–678.

    Article  PubMed  CAS  Google Scholar 

  99. Luscher B, Fuchs T, Kilpatrick CL. GABAA receptor trafficking-mediated plasticity of inhibitory synapses. Neuron 2011, 70: 385–409.

    Article  PubMed  CAS  Google Scholar 

  100. Cherubini E, Conti F. Generating diversity at GABAergic synapses. Trends Neurosci 2001, 24: 155–162.

    Article  PubMed  CAS  Google Scholar 

  101. Jacob TC, Moss SJ, Jurd R. GABAA receptor trafficking and its role in the dynamic modulation of neuronal inhibition. Nat Rev Neurosci 2008, 9: 331–343.

    Article  PubMed  CAS  Google Scholar 

  102. Mozrzymas JW, Zarnowska ED, Pytel M, Mercik K. Modulation of GABAA receptors by hydrogen ions reveals synaptic GABA transient and a crucial role of the desensitization process. J Neurosci 2003, 23: 7981–7992.

    PubMed  CAS  Google Scholar 

  103. Krishek BJ, Smart TG. Proton sensitivity of rat cerebellar granule cell GABAA receptors: dependence on neuronal development. J Physiol 2001, 530: 219–233.

    Article  PubMed  CAS  Google Scholar 

  104. Robello M, Balduzzi R, Cupello A. Modulation by extracellular pH of GABAA receptors expressed in Xenopus oocytes injected with rat brain mRNA. Int J Neurosci 2000, 103: 41–51.

    Article  PubMed  CAS  Google Scholar 

  105. Zhai J, Peoples RW, Li C. Proton inhibition of GABA-activated current in rat primary sensory neurons. Pflugers Arch 1998, 435: 539–545.

    Article  PubMed  CAS  Google Scholar 

  106. Pasternack M, Smirnov S, Kaila K. Proton modulation of functionally distinct GABAA receptors in acutely isolated pyramidal neurons of rat hippocampus. Neuropharmacology 1996, 35: 1279–1288.

    Article  PubMed  CAS  Google Scholar 

  107. Kim JS, Zhen M. Protons as intercellular messengers. Cell 2008, 132: 21–22.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian-Le Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, WZ., Xu, TL. Proton production, regulation and pathophysiological roles in the mammalian brain. Neurosci. Bull. 28, 1–13 (2012). https://doi.org/10.1007/s12264-012-1068-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-012-1068-2

Keywords

Navigation