Skip to main content
Log in

Mechanisms of lysosomal proteases participating in cerebral ischemia-induced neuronal death

溶酶体酶参与脑缺血性神经元死亡的分子机制

  • Minireview
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

There are three different types of cell death, including apoptosis (Type I), autophagic cell death (Type II), and necrosis (Type III). Ischemic neuronal death influences stroke development and progression. Lysosomes are important organelles having an acidic milieu to maintain cellular metabolism by degrading unneeded extra-and intracellular substances. Lysosomal enzymes, including cathepsins and some lipid hydrolases, when secreted following rupture of the lysosomal membrane, can be very harmful to their environment, which results in pathological destruction of cellular structures. Since lysosomes contain catalytic enzymes for degrading proteins, carbohydrates and lipids, it seems natural that they should participate in cellular death and dismantling. In this review, we discuss the recent developments in ischemic neuronal death, and present the possible molecular mechanisms that the lysosomal enzymes participate in the three different types of cell death in ischemic brain damage. Moreover, the research related to the selective cathepsin inhibitors may provide a novel therapeutic target for treating stroke and promoting recovery.

摘要

细胞死亡有凋亡(I 型)、自噬性细胞死亡(II 型)和坏死(III 型) 三种方式. 缺血性神经元的死亡影响着中风的发展进程. 溶酶体是一种重要的细胞器, 通过在酸性环境中降解不需要的胞外和胞内物质来维持细胞代谢的稳态. 溶酶体酶包括组织蛋白酶和脂质水解酶, 当溶酶体膜破裂时它们会被释放到细胞浆, 会对细胞内环境产生危害, 最终导致细胞结构的破坏. 由于溶酶体含有催化蛋白、碳水化合物和脂质的酶, 因此它们参与细胞的死亡看起来是情理之中的事情. 本综述讨论了缺血性神经元死亡的最新进展, 指出在缺血性脑损伤中溶酶体酶参与三种细胞死亡方式的可能的分子机制, 同时指出了选择性的组织蛋白酶抑制剂可能是治疗中风和促进康复新的治疗靶点.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schweichel JU, Merker HJ. The morphology of various types of cell death in prenatal tissues. Teratology 1973, 7: 253–266.

    Article  Google Scholar 

  2. de Duve C. Lysosomes revisited. Eur J Biochem 1983, 137: 391–397.

    Article  PubMed  Google Scholar 

  3. Tardy C, Codogno P, Autefage H, Levade T, Andrieu-Abadie N. Lysosomes and lysosomal proteins in cancer cell death (new players of an old struggle). Biochim Biophys Acta 2006, 1765:101–125.

    PubMed  CAS  Google Scholar 

  4. Yamashima T. Implication of cysteine proteases calpain, cathepsin and caspase in ischemic neuronal death of primates. Prog Neurobiol 2000, 62: 273–295.

    Article  PubMed  CAS  Google Scholar 

  5. Nitatori T, Sato N, Waguri S, Karasawa Y, Araki H, Shibanai K, et al. Delayed neuronal death in the CA1 pyramidal cell layer of the gerbil hippocampus following transient ischemia is apoptosis. J Neurosci 1995, 15: 1001–1011.

    PubMed  CAS  Google Scholar 

  6. Seyfried D, Han Y, Zheng Z, Day N, Moin K, Rempel S, et al. Cathepsin B and middle cerebral artery occlusion in the rat. J Neurosurg 1997, 87: 716–723.

    Article  PubMed  CAS  Google Scholar 

  7. Benchoua A, Braudeau J, Reis A, Couriaud C, Onténiente B. Activation of proinflammatory caspases by cathepsin B in focal cerebral ischemia. J Cereb Blood Flow Metab 2004, 24: 1272–1279.

    Article  PubMed  CAS  Google Scholar 

  8. Tsubokawa T, Solaroglu I, Yatsushige H, Cahill J, Yata K, Zhang JH. Cathepsin and calpain inhibitor E64d attenuates matrix metalloproteinase-9 activity after focal cerebral ischemia in rats. Stroke 2006, 37: 1888–1894.

    Article  PubMed  CAS  Google Scholar 

  9. Kagedal K, Zhao M, Svensson I, Brunk UT. Sphingosine-induced apoptosis is dependent on lysosomal proteases. Biochem J 2001, 359: 335–343.

    Article  PubMed  CAS  Google Scholar 

  10. Imagawa DK, Osifchin NE, Paznekas WA, Shin ML, Mayer MM. Consequences of cell membrane attack by complement: release of arachidonate and formation of inflammatory derivatives. Proc Natl Acad Sci USA 1983, 80: 6647–6651.

    Article  PubMed  CAS  Google Scholar 

  11. İlekel H, İlekel S, Güner G, Özdamar N. Evaluation of lipid peroxidation, cathepsin L and acid phosphatase activities in experimental brain ischemia-reperfusion. Brain Res 1999, 843:18–24.

    Article  Google Scholar 

  12. Yamashima T, Saido TC, Takita M, Miyazawa A, Yamano J, Miyakawa A, et al. Transient brain ischemia provokes Ca2+, PIP2 and calpain responses prior to delayed neuronal death in monkeys. Eur J Neurosci 1996, 8: 1932–1944.

    Article  PubMed  CAS  Google Scholar 

  13. Kagedal K, Johansson AC, Johansson U, Heimlich G, Roberg K, Wang NS, et al. Lysosomal membrane permeabilization during apoptosis-involvement of Bax? Int J Exp Pathol 2005, 86:309–321.

    Article  PubMed  Google Scholar 

  14. Zhao M, Eaton JW, Brunk UT. Protection against oxidant-mediated lysosomal rupture: a new anti-apoptotic activity of Bcl-2? FEBS Lett 2000, 485: 104–108.

    Article  PubMed  CAS  Google Scholar 

  15. Zhao M, Eaton JW, Brunk UT. Bcl-2 phosphorylation is required for inhibition of oxidative stress-induced lysosomal leak and ensuing apoptosis. FEBS Lett 2001, 509: 405–412.

    Article  PubMed  CAS  Google Scholar 

  16. Werneburg NW, Guicciardi ME, Bronk SF, Gores GJ. Tumor necrosis factor-alpha-associated lysosomal permeabilization is cathepsin B dependent. Am J Physiol Gastrointest Liver Physiol 2002, 283: G947–G956.

    PubMed  CAS  Google Scholar 

  17. Liu N, Raja SM, Zazzeroni F, Metkar SS, Shah R, Zhang M, et al. NF-kappaB protects from the lysosomal pathway of cell death. EMBO J 2003, 22: 5313–5322.

    Article  PubMed  CAS  Google Scholar 

  18. Zeng YS, Xu ZC. Co-existence of necrosis and apoptosis in rat hippocampus following transient forebrain ischemia. Neurosci Res 2000, 37: 113–125.

    Article  PubMed  CAS  Google Scholar 

  19. Ünal-Çevik I, Kilinç M, Can A, Gürsoy-Özdemir Y, Dalkara T. Apoptotic and Necrotic Death Mechanisms Are Concomitantly Activated in the Same Cell After Cerebral Ischemia. Stroke 2004, 35: 2189–2194.

    Article  PubMed  Google Scholar 

  20. Wei L, Ying DJ, Cui L, Langsdorf J, Yu SP. Necrosis, apoptosis and hybrid death in the cortex and thalamus after barrel cortex ischemia in rats. Brain Res 2004, 1022: 54–61.

    Article  PubMed  CAS  Google Scholar 

  21. Li W, Yuan X, Nordgren G, Dalen H, Dubowchik GM, Firestone RA, et al. Induction of cell death by the lysosomotropic detergent MSDH. FEBS Lett 2000, 470: 35–39.

    Article  PubMed  CAS  Google Scholar 

  22. Brunk UT, Neuzil J, Eaton JW. Lysosomal involvement in apoptosis. Redox Rep 2001, 6: 91–97.

    Article  PubMed  CAS  Google Scholar 

  23. Cirman T, Oresiæ K, Mazovec GD, Turk V, Reed JC, Myers RM, et al. Selective disruption of lysosomes in HeLa cells triggers apoptosis mediated by cleavage of Bid by multiple papain-like lysosomal cathepsins. J Biol Chem 2004, 279: 3578–3587.

    Article  PubMed  CAS  Google Scholar 

  24. Guicciardi ME, Leist M, Gores GJ. Lysosomes in cell death. Oncogene 2004, 23: 2881–2890.

    Article  PubMed  CAS  Google Scholar 

  25. Bidère N, Lorenzo HK, Carmona S, Laforge M, Harper F, Dumont C, et al. Cathepsin D triggers Bax activation, resulting in selective apoptosis-inducing factor (AIF) relocation in T lymphocytes entering the early commitment phase to apoptosis. J Biol Chem 2003, 278: 31401–31411.

    Article  PubMed  CAS  Google Scholar 

  26. Heinrich M, Neumeyer J, Jakob M, Hallas C, Tchikov V, Winoto-Morbach S, et al. Cathepsin D links TNF-induced acid sphingomyelinase to Bid-mediated caspase-9 and-3 activation. Cell Death Differ 2004, 11: 550–563.

    Article  PubMed  CAS  Google Scholar 

  27. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, et al. Cytochrome c and dATP-dependent formation of Apaf-1/Caspase-9 complex initiates an apoptotic protease cascade. Cell 1997, 91: 479–489.

    Article  PubMed  CAS  Google Scholar 

  28. Zou H, Henzel WJ, Liu X, Lutschg A, Wang X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 1997, 90: 405–413.

    Article  PubMed  CAS  Google Scholar 

  29. Wang Y, Gu ZL, Cao Y, Liang ZQ, Han R, Bennett MC, et al. Lysosomal enzyme cathepsin B is involved in kainic acid-induced excitotoxicity in rat striatum. Brain Res 2006, 1071: 245–249.

    Article  PubMed  CAS  Google Scholar 

  30. Klionsky DJ, Emr SD. Autophagy as a regulated pathway of cellular degradation. Science 2000, 290: 1717–1721.

    Article  PubMed  CAS  Google Scholar 

  31. Zhu C, Wang X, Xu F, Bahr BA, Shibata M, Uchiyama Y, et al. The influence of age on apoptotic and other mechanisms of cell death after cerebral hypoxia-ischemia. Cell Death Differ 2005, 12: 162–176.

    Article  PubMed  CAS  Google Scholar 

  32. Adhami F, Liao G, Morozov YM, Schloemer A, Schmithorst VJ, Lorenz JN, et al. Cerebral ischemia-hypoxia induces intravascular coagulation and autophagy. Am J Pathol 2006, 169: 566–583.

    Article  PubMed  CAS  Google Scholar 

  33. Ohsawa Y, Isahara K, Kanamori S, Shibata M, Kametaka S, Gotow T, et al. An ultrastructural and immunohistochemical study of PC12 cells during apoptosis induced by serum deprivation with special reference to autophagy and lysosomal cathepsins. Arch Histol Cytol 1998, 61: 395–403.

    Article  PubMed  CAS  Google Scholar 

  34. Xue L, Fletcher GC, Tolkovsky AM. Autophagy is activated by apoptotic signalling in sympathetic neurons: an alternative mechanism of death execution. Mol Cell Neurosci 1999, 14: 180–198.

    Article  PubMed  CAS  Google Scholar 

  35. Gozuacik D, Kimchi A. Autophagy as a cell death and tumor suppressor mechanism. Oncogene 2004, 23: 2891–2906.

    Article  PubMed  CAS  Google Scholar 

  36. Shimizu S, Kanaseki T, Mizushima N, Mizuta T, Arakawa-Kobayashi S, Thompson CB, et al. Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol 2004, 6: 1221–1228.

    Article  PubMed  CAS  Google Scholar 

  37. Thorburn J, Moore F, Rao A, Barclay WW, Thomas LR, Grant KW, et al. Selective inactivation of a Fas-associated death domain protein (FADD)-dependent apoptosis and autophagy pathway in immortal epithelial cells. Mol Biol Cell 2005, 16: 1189–1199.

    Article  PubMed  CAS  Google Scholar 

  38. Scarlatti F, Bauvy C, Ventruti A, Sala G, Cluzeaud F, Vandewalle A, et al. Ceramide-mediated macroautophagy involves inhibition of protein kinase B and up-regulation of beclin 1. J Biol Chem 2004, 279: 18384–18391.

    Article  PubMed  CAS  Google Scholar 

  39. Inbal B, Bialik S, Sabanay I, Shani G, Kimchi A. DAP kinase and DRP-1 mediate membrane blebbing and the formation of autophagic vesicles during programmed cell death. J Cell Biol 2002, 157: 455–468.

    Article  PubMed  CAS  Google Scholar 

  40. Cardenas-Aguayo Mdel C, Santa-Olalla J, Baizabal JM, Salgado LM, Covarrubias L. Growth factor deprivation induces an alternative non-apoptotic death mechanism that is inhibited by Bcl-2 in cells derived from neural precursor cells. J Hematother Stem Cell Res 2003, 12: 735–748.

    Article  PubMed  CAS  Google Scholar 

  41. Lee JM, Zipfel GJ, Choi DW. The changing landscape of ischemic brain injury mechanisms. Nature 1999, 399(6738 Suppl): A7–A14.

    PubMed  CAS  Google Scholar 

  42. Seyfried DM, Veyna R, Han Y, Li K, Tang N, Betts RL, et al. A selective cysteine protease inhibitor is non-toxic and cerebroprotective in rats undergoing transient middle cerebral artery ischemia. Brain Res 2001, 901: 94–101.

    Article  PubMed  CAS  Google Scholar 

  43. Tsubokawa T, Yamaguchi-Okada M, Calvert JW, Solaroglu I, Shimamura N, Yata K, et al. Neurovascular and neuronal protection by E64d after focal cerebral ischemia in rats. J Neurosci Res 2006, 84: 832–840.

    Article  PubMed  CAS  Google Scholar 

  44. Yoshida M, Yamashima T, Zhao L, Tsuchiya K, Kohda Y, Tonchev AB, et al. Primate neurons show different vulnerability to transient ischemia and response to cathepsin inhibition. Acta Neuropathol 2002, 104: 267–272.

    PubMed  CAS  Google Scholar 

  45. Luke CJ, Pak SC, Askew YS, Naviglia TL, Askew DJ, Nobar SM, et al. An intracellular serpin regulates necrosis by inhibiting the induction and sequelae of lysosomal injury. Cell 2007, 130: 1108–1119.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Ling Zhang  (张慧灵).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, AP., Zhang, HL. & Qin, ZH. Mechanisms of lysosomal proteases participating in cerebral ischemia-induced neuronal death. Neurosci. Bull. 24, 117–123 (2008). https://doi.org/10.1007/s12264-008-0117-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-008-0117-3

Keywords

CLC number

关键词

Navigation