Skip to main content
Log in

ATP depletion is the major cause of MPP+ induced dopamine neuronal death and worm lethality in α-synuclein transgenic C. elegans

ATP 损耗是 MPP+ 引起 α-synuclein 转基因线虫多巴胺能神经元死亡和虫体死亡的主要原因

  • Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Objective

To investigate the toxic effect of environmental neurotoxin MPP+ to C. elegans and identify the mechanisms that cause the toxicity.

Methods

Human α-synuclein transgenic C. elegans was used as the animal model, the toxic effect of MPP+ to dopamine (DA) neurons and the lifespan of worms was tested. The worms were feed with OP50 to determine whether ATP increase can rescue the worm from toxicity. ATP level and aberrant protein accumulation were analyzed in the MPP+ treated worms with or without OP50 addition.

Results

We found that MPP+ induced DA cell death and worm lethality, which could be prevented by OP50 treatment. OP50 exerted the protective effect by up-regulating ATP level, even though it also induced accumulation of α-synuclein. Despite the undefined role of protein aggregation to the cell death, our results showed that the toxicity of MPP+ was mainly caused by the ATP depletion in the α-synuclein transgenic C. elegans.

Conclusion

MPP+ could induce DA neuronal death and worm lethality in α-synuclein transgenic C. elegans; Compared with the aggregation of α-synuclein, the major cause of MPP+ toxicity appeared due to ATP depletion.

摘要

目的

揭示环境神经毒素 MPP+ 对线虫的毒性影响并探讨其毒性机理。

方法

以人源 α-synuclein 转基因线虫作为动物模型, 用 MPP+ 处理该线虫, 观察 MPP+ 对线虫多巴胺能神经元和其生存能力的影响。 通过供给 OP50 以提高线虫体内 ATP 的水平, 对比分析 ATP 水平、 蛋白质异常沉积等重要指标, 探讨二者在 MPP+ 引起的转基因线虫的病变中所起的作用。

结果

MPP+ 能够引起线虫多巴胺能神经元和线虫虫体的死亡; 尽맜进食 OP50 也会引起 α-synuclein 的沉积, 但进食 OP50 能够提高体内 ATP 的水平并缓解 MPP+ 的毒性。 虽无直接证据证明 α-synuclein 沉积对神经细胞的影响, 但结果提示, 在该转基因线虫中, 与蛋白质的异常沉积相比, MPP+ 导致的 ATP 损耗是其毒性作用的最主要诱因。

结论

MPP+ 可以引起 α-synuclein 转基因线虫多巴胺能神经元的死亡和虫体的死亡, 其毒性的主要原因是 ATP 损耗而不是 α-synuclein 的异常聚集 (沉积)。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Muchowski PJ, Wacker JL. Modulation of neurodegeneration by molecular chaperones. Nat Rev Neurosci 2005, 6: 11–22.

    Article  PubMed  CAS  Google Scholar 

  2. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 1997, 276: 2045–2047.

    Article  PubMed  CAS  Google Scholar 

  3. Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, et al. alpha-Synuclein locus triplications cause Parkinson’s disease. Science 2003, 302: 841.

    Article  PubMed  CAS  Google Scholar 

  4. Parker WD Jr, Boyson SJ, Parks JK. Abnormalities of the electron transport chain in idiopathic Parkinson’s disease. Ann Neurol 1989, 26: 719–723.

    Article  PubMed  Google Scholar 

  5. Schmidt N, Ferger BJ. Neurochemical findings in the MPTP model of Parkinson’s disease. J Neural Transm 2001, 108: 1263–1282.

    Article  PubMed  CAS  Google Scholar 

  6. Sherer TB, Betarbet R, Stout AK, Lund S, Baptista M, Panov AV, et al. An in vitro model of Parkinson’s disease: linking mitochondrial impairment to altered alpha-synuclein metabolism and oxidative damage. J Neurosci 2002, 22: 7006–7015.

    PubMed  CAS  Google Scholar 

  7. Ciehanover A, Hod Y, Hershko A. A heat-stable polypeptide component of an ATP-dependent proteolytic system from reticulocytes. Biochem Biophy Res Commun 1978, 81: 1100–1105.

    Article  CAS  Google Scholar 

  8. Jiang J, Ballinger CA, Wu Y, Dai Q, Cyr DM, Hohfeld J, et al. CHIP is a U-box-dependent E3 ubiquitin ligase: identification of Hsc70 as a target for ubquitylation. J Biol Chem 2001, 276: 42938–42944.

    Article  PubMed  CAS  Google Scholar 

  9. Hoglinger GU, Carrard G, Michel PP, Medja F, Hirsch EC. Dysfunction of mitochondrial complex I and the proteasome: interactions between two biochemical deficits in a cellular model of Parkinson’s disease. J Neurochem 2003, 86: 1297–1307.

    Article  PubMed  CAS  Google Scholar 

  10. Neuwald AF, Aravind L, Spouge JL, Koonin EV. AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res 1999, 9: 27–43.

    PubMed  CAS  Google Scholar 

  11. Troulinaki K, Tavernarakis N. Neurodegenerative conditions associated with ageing: a molecular interplay. Mech Ageing Dev 2005, 126: 23–33.

    Article  PubMed  CAS  Google Scholar 

  12. Mclean PJ, Kawamata H, Shariff S, Hewett J, Sharma N, Ueda K, et al. TorsinA and heat shock proteins act as molecular chaperones: suppression of alpha-synuclein aggregation. J Neuronchem 2002, 83: 846–854.

    Article  CAS  Google Scholar 

  13. Caldwell GA, Cao S, Sexton EG, Gelwix CC, Bevel JP, Caldwell KA. Suppression of polyglutamine-induced protein aggregation in Caenorhabditis elegans by torsin proteins. Hum Mol Genet 2003, 12: 307–319.

    Article  PubMed  CAS  Google Scholar 

  14. Bates TE, Heales SJ, Davies SE, Boakye P, Clark JB. Effects of 1-methyl-4-phenylpyridinium on isolated rat brain mitochondria: evidence for a primary involvement of energy depletion. J Neurochem 1994, 63: 640–648.

    Article  PubMed  CAS  Google Scholar 

  15. Lee HJ, Shin SY, Choi C, Lee YH, Lee SJ. Formation and removal of alpha-synuclein aggregates in cells exposed to mitochondrial inhibitors. J Biol Chem 2001, 277: 5411–5417.

    Article  PubMed  CAS  Google Scholar 

  16. Vila M, Vukosavic S, Jackson-Lewis V, Neystat M, Jakowec M, Przedborski S. Alpha-synuclein up-regulation in substantia nigra dopaminergic neurons following administration of the parkinsonian toxin MPTP. J Neurochem 2000, 74: 721–729.

    Article  PubMed  CAS  Google Scholar 

  17. Kalivendi SV, Cunningham S, Kotamraju S, Joseph J, Hillard CJ, Kalyanaraman B. Alpha-synuclein up-regulation and aggregation during MPP+ induced apoptosis in neuroblastoma cells: Intermediacy of transferrin receptor iron and hydrogen peroxide. J Biol Chem 2004, 279: 15240–15247.

    Article  PubMed  CAS  Google Scholar 

  18. Xu J, Kao SY, Lee FJ, Song W, Jin LW, Yankner BA. Dopamine-dependent neurotoxicity of alpha-synuclein: a mechanism for selective neurodegeneration in Parkinson disease. Nat Med 2002, 8: 600–606

    Article  PubMed  CAS  Google Scholar 

  19. Tabrizi SJ, Orth M, Wilkinson JM, Taanman JW, Warner TT, Cooper JM, et al. Expression of mutant alpha-synuclein causes increased susceptibility to dopamine toxicity. Hum Mol Genet 2000, 9: 2683–2689.

    Article  PubMed  CAS  Google Scholar 

  20. Ostrerova-Golts N, Petrucelli L, Hardy J, Lee JM, Farer M, Wolozin B. The A53T alpha-synuclein mutation increases iron-dependent aggregation and toxicity. J Neurosci 2000, 20: 6048–6054.

    PubMed  CAS  Google Scholar 

  21. Lakso M, Vartiainen S, Moilanen AM, Sirviö J, Thomas JH, Nass R, et al. Dopaminergic neuronal loss and motor deficits in Caenorhabditis elegans overexpressing human alphasynuclein. J Neurochem 2003, 86: 165–172.

    Article  PubMed  CAS  Google Scholar 

  22. Cohen E, Bieschke J, Perciavalle RM, Kelly JW, Dillin A. Opposing activities protect against age-onset proteotoxicity. Science 2006, 313: 1604–1610.

    Article  PubMed  CAS  Google Scholar 

  23. Brenner S. The genetics of Caenorhabditis elegans. Genetics 1974, 77: 71–94.

    PubMed  CAS  Google Scholar 

  24. Nass R, Hall DH, Miller DM, Blakely RD. Neurotoxin-induced degeneration of dopamine neurons in Caenorhabditis elegans. Proc Natl Acad Sci USA 2002, 99: 3264–3269.

    Article  PubMed  CAS  Google Scholar 

  25. Schmidt E, Seifert M, Baumeister R. Caenorhabditis elegans as a model system for Parkinson’s disease. Neurodegener Dis 2007, 4: 199–217

    Article  PubMed  Google Scholar 

  26. Michelle Boehm, Frank Slack. A developmental timing microRNA and its Target regulate life span in C. elegans. Science 2005, 310: 1954–1957.

    Article  PubMed  CAS  Google Scholar 

  27. Arrasate M, Mitra SM, Schweitzer ES, Segal MR, Finkbeiner S. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 2004, 431: 805–810.

    Article  PubMed  CAS  Google Scholar 

  28. Clarke C, Moore AP. Parkinson’s disease. Clin Evid 2004, 11: 1736–1754.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Dong Le  (乐卫东).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, YM., Pu, P. & Le, WD. ATP depletion is the major cause of MPP+ induced dopamine neuronal death and worm lethality in α-synuclein transgenic C. elegans . Neurosci. Bull. 23, 329–335 (2007). https://doi.org/10.1007/s12264-007-0049-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-007-0049-3

Keywords

关键词

CLC number

Navigation