Skip to main content
Log in

Sodium-potassium Adenosine Triphosphatase α2 Subunit (ATP1A2) Negatively Regulates UCP1-dependent and UCP1-independent Thermogenesis in 3T3-L1 Adipocytes

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Increasing the number of brite cells (browning) in white adipocytes has attracted considerable attention to combat obesity because brite cells also help elevate energy expenditure. Sodium-potassium adenosine triphosphatase α2 subunit (ATP1A2) has been studied extensively in migraine and cancers. On the other hand, the role of ATP1A2 in adipocytes biology with a focus on fat browning needs to be elucidated. In this study, suppression of ATP1A2 induced browning in white adipocytes. The siRNA-mediated knockdown was used to identify the functional roles of the ATP1A2 gene in white adipocytes browning and the lipid metabolism. A deficiency of ATP1A2 promoted the expression of brown adipocyte-specific proteins and genes, suppressed adipogenesis and lipogenesis, and enhanced lipolysis and fat oxidation, as well as mitochondrial biogenesis. Moreover, silencing of ATP1A2 enhanced the expression of marker proteins for UCPl-dependent (β3-AR, PKA, p38, ATF2, and ERK) and UCP1-independent (α1-AR, SERCA, and RyR) thermogenesis. A mechanistic study showed that a deficiency of ATP1A2 induces browning in white adipocytes by activating the β3-AR/ERK signaling pathways as well as α1-AR/SERCA-based thermogenesis through an ATP-consuming process. In conclusion, ATP1A2 is a previously unrecognized player in thermogenesis in white adipocytes, and downregulating ATP1A2 and activating both UCP1-dependent and UCP1-independent thermogenesis in adipocytes could be a novel pharmacotherapeutic approach to treat obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dragano, N. R. V., J. Fernø, C. Diéguez, M. López, and E. Milbank (2020) Recent updates on obesity treatments: available drugs and future directions. Neuroscience 437: 215–239.

    CAS  PubMed  Google Scholar 

  2. Harms, M. and P. Seale (2013) Brown and beige fat: development, function and therapeutic potential. Nat. Med. 19: 1252–1263.

    CAS  PubMed  Google Scholar 

  3. Leitner, B. P., S. Huang, R. J. Brychta, C. J. Duckworth, A. S. Baskin, S. McGehee, I. Tal, W. Dieckmann, G. Gupta, G. M. Kolodny, K. Pacak, P. Herscovitch, A. M. Cypess, and K. Y Chen (2017) Mapping of human brown adipose tissue in lean and obese young men. Proc. Natl. Acad. Sci. U. S. A. 114: 8649–8654.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kajimura, S., B. M. Spiegelman, and P. Seale (2015) Brown and beige fat: physiological roles beyond heat generation. Cell Metab. 22: 546–559.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Villarroya, F., R. Cereijo, J. Villarroya, and M. Giralt (2017) Brown adipose tissue as a secretory organ. Nat. Rev. Endocrinol. 13: 26–35.

    CAS  PubMed  Google Scholar 

  6. Klepac, K., A. Georgiadi, M. Tschöp, and S. Herzig (2019) The role of brown and beige adipose tissue in glycaemic control. Mol. Aspects Med. 68: 90–100.

    CAS  PubMed  Google Scholar 

  7. Ukropec J., R. P. Anunciado, Y. Ravussin, M. W. Hulver, and L. P. Kozak (2006) UCP1-independent thermogenesis in white adipose tissue of cold-acclimated Ucp1-/- mice. J. Biol. Chem. 281: 31894–31908.

    CAS  PubMed  Google Scholar 

  8. Brownstein A. J., M. Veliova, R. Acin-Perez, M. Liesa, and O. S. Shirihai (2022) ATP-consuming futile cycles as energy dissipating mechanisms to counteract obesity. Rev. Endocr. Metab. Disord. 23: 121–131.

    CAS  PubMed  Google Scholar 

  9. Ikeda K., Q. Kang, T. Yoneshiro, J. P. Camporez, H. Maki, M. Homma, K. Shinoda, Y. Chen, X. Lu, P. Maretich, K. Tajima, K. M. Ajuwon, T. Soga, and S. Kajimura (2017) UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis. Nat. Med. 23: 1454–1465.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Choi M., S. Mukherjee, and J. W. Yun (2022) Curcumin stimulates UCP1-independent thermogenesis in 3T3-L1 white adipocytes but suppresses in C2C12 muscle cells. Biotechnol. Bioprocess Eng. 27: 961–974.

    CAS  Google Scholar 

  11. Mukherjee S., M. Choi, and J. W. Yun (2022) Trans-anethole induces thermogenesis via activating SERCA/SLN axis in C2C12 muscle cells. Biotechnol. Bioprocess Eng. 27: 938–948.

    CAS  Google Scholar 

  12. Pradhan R. N., J. J. Bues, V. Gardeux, P. C. Schwalie, D. Alpern, W. Chen, J. Russeil, S. K. Raghav, and B. Deplancke (2017) Dissecting the brown adipogenic regulatory network using integrative genomics. Sci. Rep. 7: 42130.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Shapira, S. N. and P. Seale (2019) Transcriptional control of brown and beige fat development and function. Obesity (Silver Spring) 27: 13–21.

    CAS  PubMed  Google Scholar 

  14. Subramani, M. and J. W. Yun (2021) Loss of lymphocyte cytosolic protein 1 (LCP1) induces browning in 3T3-L1 adipocytes via β3-AR and the ERK-independent signaling pathway. Int. J. Biochem. Cell Biol. 138: 106053.

    CAS  PubMed  Google Scholar 

  15. Manigandan, S. and J. W. Yun (2022) Loss of cytoplasmic FMR1-interacting protein 2 (CYFIP2) induces browning in 3T3-L1 adipocytes via repression of GABA-BR and activation of mTORC1. J. Cell Biochem. 123: 863–877.

    CAS  PubMed  Google Scholar 

  16. Kapri-Pardes, E., A. Katz, H. Haviv, Y. Mahmmoud, M. Ilan, I. Khalfin-Penigel, S. Carmeli, O. Yarden, and S. J. D. Karlish (2011) Stabilization of the α2 isoform of Na, K-ATPase by mutations in a phospholipid binding pocket. J. Biol. Chem. 286: 42888–42899.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Sodhi, K., J. Denvir, J. Liu, J. R. Sanabria, Y. Chen, R. Silverstein, Z. Xie, N. G. Abraham, and J. I. Shapiro (2020) Oxidant-induced alterations in the adipocyte transcriptome: role of the Na,K-ATPase oxidant amplification loop. Int. J. Mol. Sci. 21: 5923.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Blanco, G. and R. W. Mercer (1998) Isozymes of the Na/K-ATPase: heterogeneity in structure, diversity in function. Am. J. Physiol. 275: F633–F650.

    CAS  PubMed  Google Scholar 

  19. Mobasheri, A., J. Avila, I. Cózar-Castellano, M. D. Brownleader, M. Trevan, M. J. Francis, J. F. Lamb, and P. Martín-Vasallo (2000) Na+, K+-ATPase isozyme diversity; comparative biochemistry and physiological implications of novel functional interactions. Biosci. Rep. 20: 51–91.

    CAS  PubMed  Google Scholar 

  20. Matchkov, V. V. and I. I. Krivoi (2016) Specialized functional diversity and interactions of the Na,K-ATPase. Front. Physiol. 7: 179.

    PubMed  PubMed Central  Google Scholar 

  21. Golovina, V. A., H. Song, P. F. James, J. B. Lingrel, and M. P. Blaustein (2003) Na+ pump alpha 2-subunit expression modulates Ca2+ signaling. Am. J. Physiol. Cell Physiol. 284: C475–C486.

    CAS  PubMed  Google Scholar 

  22. Matchkov, V. V., N. Moeller-Nielsen, V. S. Dam, Z. Nourian, D. M. Briggs Boedtkjer, and C. Aalkjaer (2012) The α2 isoform of the Na,K-pump is important for intercellular communication, agonist-induced contraction, and EDHF-like response in rat mesenteric arteries. Am. J. Physiol. Heart Cire. Physiol. 303: H36–H46.

    CAS  Google Scholar 

  23. Mosmann, T. (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65: 55–63.

    CAS  PubMed  Google Scholar 

  24. Wang, L., F. Xu, X.-J. Zhang, R.-M. Jin, and X. Li (2015) Effect of high-fat diet on cholesterol metabolism in rats and its association with Na+/K+-ATPase/Src/pERK signaling pathway. J. Huazhong Univ. Sci. Technolog. Med. Sci. 35: 490–494.

    PubMed  Google Scholar 

  25. Cornelius, F., M. Habeck, R. Kanai, C. Toyoshima, and S. J. D. Karlish (2015) General and specific lipid–protein interactions in Na,K-ATPase. Biochim. Biophys. Acta 1848: 1729–1743.

    CAS  PubMed  Google Scholar 

  26. Xie, Z.-J., J. Novograd, Y. Itzkowitz, A. Sher, Y. D. Buchen, K. Sodhi, N. G. Abraham, and J. I. Shapiro (2020) The pivotal role of adipocyte-Na K peptide in reversing systemic inflammation in obesity and COVID-19 in the development of heart failure. Antioxidants (Basel) 9: 1129.

    CAS  PubMed  Google Scholar 

  27. Yang, W., T. Kelly, and J. He (2007) Genetic epidemiology of obesity. Epidemiol. Rev. 29: 49–61.

    PubMed  Google Scholar 

  28. Bonilauri, B., A. C. Camillo-Andrade, M. D. M. Santos, J. S. D. G. Fischer, P. C. Carvalho, and B. Dallagiovanna (2021) Proteogenomic analysis reveals proteins involved in the first step of adipogenesis in human adipose-derived stem cells. Stem Cells Int. 2021: 3168428.

    PubMed  PubMed Central  Google Scholar 

  29. Russo, J. J. and K. J. Sweadner (1993) Na(+)-K(+)-ATPase subunit isoform pattern modification by mitogenic insulin concentration in 3T3-L1 preadipocytes. Am. J. Physiol. 264: C311–C316.

    CAS  PubMed  Google Scholar 

  30. Obradovic, M., S. Zafirovic, A. Jovanovic, E. S. Milovanovic, S. A. Mousa, M. Labudovic-Borovic, and E. R. Isenovic (2015) Effects of 17β-estradiol on cardiac Na(+)/K(+)-ATPase in high fat diet fed rats. Mol. Cell. Endocrinol. 416: 46–56.

    CAS  PubMed  Google Scholar 

  31. Gusarova, G. A., H. E. Trejo, L. A. Dada, A. Briva, L. C. Welch, R. B. Hamanaka, G. M. Mutlu, N. S. Chandel, M. Prakriya, and J. I. Sznajder (2011) Hypoxia leads to Na,K-ATPase downregulation via Ca(2+) release-activated Ca(2+) channels and AMPK activation. Mol. Cell. Biol. 31: 3546–3556.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Bray, G. A. and Y. Yukimura (1978) Activity of (Na+ + K+)-ATPase in the liver of animals with experimental obesity. Life Sci. 22: 1637–1642.

    CAS  PubMed  Google Scholar 

  33. Mimura, M., H. Makino, A. Kanatsuka, T. Asai, and S. Yoshida (1994) Reduction of erythrocyte (Na(+)-K+)ATPase activity in type 2 (non-insulin-dependent) diabetic patients with micro-albuminuria. Horm. Metab. Res. 26: 33–38.

    CAS  PubMed  Google Scholar 

  34. Sennoune, S., A. Gerbi, M. J. Duran, J. P. Grillasca, E. Compe, S. Pierre, R. Planells, M. Bourdeaux, P. Vague, G. Pieroni, and J. M. Maixent (2000) Effect of streptozotocin-induced diabetes on rat liver Na+/K+-ATPase. Eur. J. Biochem. 267: 2071–2078.

    CAS  PubMed  Google Scholar 

  35. Scherzer, P., I. Nachliel, H. Bar-On, M. M. Popovtzer, and E. Ziv (2000) Renal Na-K-ATPase hyperactivity in diabetic Psammomys obesus is related to glomerular hyperfiltration but is insulin-independent. J. Endocrinol. 167: 347–354.

    CAS  PubMed  Google Scholar 

  36. Kawakami, K., T. Onaka, M. Iwase, I. Homma, and K. Ikeda (2005) Hyperphagia and obesity in Na,K-ATPase alpha2 subunit-defective mice. Obes. Res. 13: 1661–1671.

    CAS  PubMed  Google Scholar 

  37. Rothwell, N. J., M. E. Saville, M. J. Stock, and M. G. Wyllie (1982) Catecholamine and thyroid hormone influence on brown fat Na+, K+-ATPase activity and thermogenesis in the rat. Horm. Metab. Res. 14: 261–265.

    CAS  PubMed  Google Scholar 

  38. Clausen, T. (2003) Na+-K+ pump regulation and skeletal muscle contractility. Physiol. Rev. 83: 1269–1324.

    CAS  PubMed  Google Scholar 

  39. Beltowski, J., A. Jamroz-Wiœniewska, E. Borkowska, J. Nazar, and A. Marciniak (2005) Antioxidant treatment normalizes renal Na+,K+-ATPase activity in leptin-treated rats. Pharmaeol. Rep. 57: 219–228.

    CAS  Google Scholar 

  40. Nisoli, E., E. Clementi, C. Paolucci, V. Cozzi, C. Tonello, C. Sciorati, R. Bracale, A. Valerio, M. Francolini, S. Moncada, and M. O. Carruba (2003) Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Science 299: 896–899.

    CAS  PubMed  Google Scholar 

  41. Gusarova, G. A., L. A. Dada, A. M. Kelly, C. Brodie, L. A. Witters, N. S. Chandel, and J. I. Sznajder (2009) Alpha1-AMP-activated protein kinase regulates hypoxia-induced Na,K-ATPase endocytosis via direct phosphorylation of protein kinase C zeta. Mol. Cell. Biol. 29: 3455–3464.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Lee, S. C., R. Nuccitelli, and P. A. Pappone (1993) Adrenergically activated Ca2+ increases in brown fat cells: effects of Ca2+, K+, and K channel block. Am. J. Physiol. 264: C217–C228.

    CAS  PubMed  Google Scholar 

  43. Gao, J., R. Wymore, R. T. Wymore, Y. Wang, D. McKinnon, J. E. Dixon, R. T. Mathias, I. S. Cohen, and G. J. Baldo (1999) Isoform-specific regulation of the sodium pump by alpha- and beta-adrenergic agonists in the guinea-pig ventricle. J. Physiol. 516: 377–383.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Matos, M., E. Augusto, P. Agostinho, R. A. Cunha, and J.-F. Chen (2013) Antagonistic interaction between adenosine A2A receptors and Na+/K+-ATPase-α2 controlling glutamate uptake in astrocytes. J. Neurosci. 33: 18492–18502.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Blaustein, M. P. and V. A. Golovina (2001) Structural complexity and functional diversity of endoplasmic reticulum Ca(2+) stores. Trends Neurosci. 24: 602–608.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by Daegu University Research Grant, 2023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Won Yun.

Ethics declarations

The authors declare that they have no conflicts of interest associated with this study.

We used commercially available cell model and did not use any human or animal samples.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manigandan, S., Yun, J.W. Sodium-potassium Adenosine Triphosphatase α2 Subunit (ATP1A2) Negatively Regulates UCP1-dependent and UCP1-independent Thermogenesis in 3T3-L1 Adipocytes. Biotechnol Bioproc E 28, 644–657 (2023). https://doi.org/10.1007/s12257-023-0095-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-023-0095-3

Keywords

Navigation