Skip to main content
Log in

Zero-valent Iron Enhances Acetate and Butyrate Production from Carbon Monoxide by Fonticella tunisiensis HN43

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The use of carbon monoxide (CO) as a valuable feedstock for producing various platform chemicals through biorefinery processes has attracted considerable research interest. Acetate is an intermediate chemical synthesized from CO and CO2 through acetogenesis via the Wood–Ljungdahl pathway. Acetate can further serve as a substrate for chain elongation into a higher volatile fatty acid (VFA) when sufficient reducing power is provided. Zero-valent iron (ZVI) is used widely as a reducing agent in environmental remediation applications. This study established that the externally provided reducing power from ZVI oxidation increased the acetate production (approximately 13 times) from CO and the further synthesis of VFA. The effect of ZVI on CO/CO2 conversion was evaluated by quantifying the formation of acetate and butyrate. The carbon and electron balance provide information on the mechanism of C1 gas conversion and chain elongation. These findings highlight a useful intermediate production under the reducing power-limited bioprocesses, such as C1 gas bioconversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Im, C. H., C. Kim, Y. E. Song, S.-E. Oh, B.-H. Jeon, and J. R. Kim (2018) Electrochemically enhanced microbial CO conversion to volatile fatty acids using neutral red as an electron mediator. Chemosphere 191: 166–173.

    Article  CAS  PubMed  Google Scholar 

  2. Lee, S.-M., J. Lee, S. H. Lee, J. Y. Kim, H. S. Lee, and S. G. Kang (2019) Formulation of a low-cost medium for improved cost-effectiveness of hydrogen production by Thermococcus onnurineus NA1. Biotechnol. Bioprocess Eng. 24: 833–838.

    Article  CAS  Google Scholar 

  3. Kim, J., K.-Y. Kim, J. K. Ko, S.-M. Lee, G. Gong, K. H. Kim, and Y. Um (2022) Characterization of a novel acetogen Clostridium sp. JS66 for production of acids and alcohols: focusing on hexanoic acid production from syngas. Biotechnol. Bioprocess Eng. 27: 89–98.

    Article  CAS  Google Scholar 

  4. Clomburg, J. M., A. M. Crumbley, and R. Gonzalez (2017) Industrial biomanufacturing: the future of chemical production. Science 355: aag0804.

    Article  PubMed  Google Scholar 

  5. Nielsen, D. U., X.-M. Hu, K. Daasbjerg, and T. Skrydstrup (2018) Chemically and electrochemically catalysed conversion of CO2 to CO with follow-up utilization to value-added chemicals. Nat. Catal. 1: 244–254.

    Article  CAS  Google Scholar 

  6. Ni, M., D. Y. C. Leung, M. K. H. Leung, and K. Sumathy (2006) An overview of hydrogen production from biomass. Fuel Process. Technol. 87: 461–472.

    Article  CAS  Google Scholar 

  7. Logan, B. E., S.-E. Oh, I. S. Kim, and S. Van Ginkel (2002) Biological hydrogen production measured in batch anaerobic respirometers. Environ. Sci. Technol. 36: 2530–2535.

    Article  CAS  PubMed  Google Scholar 

  8. Sivagurunathan, P., G. Kumar, P. Bakonyi, S.-H. Kim, T. Kobayashi, K. Q. Xu, G. Lakner, G. Tóth, N. Nemestóthy, and K. Bélafi-Bakó (2016) A critical review on issues and overcoming strategies for the enhancement of dark fermentative hydrogen production in continuous systems. Int. J. Hydrogen Energy 41: 3820–3836.

    Article  CAS  Google Scholar 

  9. Sipma, J., A. M. Henstra, S. M. Parshina, P. N. Lens, G. Lettinga, and A. J. M. Stams (2006) Microbial CO conversions with applications in synthesis gas purification and bio-desulfurization. Crit. Rev. Biotechnol. 26: 41–65.

    Article  CAS  PubMed  Google Scholar 

  10. Feaster, J. T., C. Shi, E. R. Cave, T. Hatsukade, D. N. Abram, K. P. Kuhl, C. Hahn, J. K. Nørskov, and T. F. Jaramillo (2017) Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes. ACS Catal. 7: 4822–4827.

    Article  CAS  Google Scholar 

  11. Geelhoed, J. S., A. M. Henstra, and A. J. M. Stams (2016) Carboxydotrophic growth of Geobacter sulfurreducens. Appl. Microbiol. Biotechnol. 100: 997–1007.

    Article  CAS  PubMed  Google Scholar 

  12. Li, S., M. Kim, J. Jae, M. Jang, B.-H. Jeon, and J. R. Kim (2022) Solid neutral red/Nafion conductive layer on carbon felt electrode enhances acetate production from CO2 and energy efficiency in microbial electrosynthesis system. Bioresour. Technol. 363: 127983.

    Article  CAS  PubMed  Google Scholar 

  13. Kim, M., S. Li, Y. E. Song, D.-Y. Lee, and J. R. Kim (2022) Electrode-attached cell-driven biogas upgrading of anaerobic digestion effluent CO2 to CH4 using a microbial electrosynthesis cell. Chem. Eng. J. 446: 137079.

    Article  CAS  Google Scholar 

  14. Zhen, G., X. Lu, Y.-Y. Li, Y. Liu, and Y. Zhao (2015) Influence of zero valent scrap iron (ZVSI) supply on methane production from waste activated sludge. Chem. Eng. J. 263: 461–470.

    Article  CAS  Google Scholar 

  15. Im, H. S., C. Kim, Y. E. Song, J. Baek, C. H. Im, and J. R. Kim (2019) Isolation of novel CO converting microorganism using zero valent iron for a bioelectrochemical system (BES). Biotechnol. Bioprocess Eng. 24: 232–239.

    Article  CAS  Google Scholar 

  16. Kong, D. S., E. J. Park, S. Mutyala, M. Kim, Y. Cho, S. E. Oh, C. Kim, and J. R. Kim (2021) Bioconversion of crude glycerol into 1,3-Propanediol(1,3-PDO) with bioelectrochemical system and zero-valent Iron using Klebsiella pneumoniae L17. Energies 14: 6806.

    Article  CAS  Google Scholar 

  17. Kong, D. S., M. Kim, S. Li, S. Mutyala, M. Jang, C. Kim, and J. R. Kim (2023) Bioconversion of glycerol to 1, 3-Propanediol using Klebsiella pneumoniae L17 with the microbially influenced corrosion of zero-valent iron. Fermentation 9: 233.

    Article  CAS  Google Scholar 

  18. Kong, D. S., C. Kim, Y. E. Song, J. Baek, H. S. Im, and J. R. Kim (2021) Zero-valent iron driven bioconversion of glycerol to 1, 3-propanediol using Klebsiella pneumoniae L17. Process Biochem. 106: 158–162.

    Article  CAS  Google Scholar 

  19. Zhang, Y., Y. Feng, and X. Quan (2015) Zero-valent iron enhanced methanogenic activity in anaerobic digestion of waste activated sludge after heat and alkali pretreatment. Waste Manag. 38: 297–302.

    Article  CAS  PubMed  Google Scholar 

  20. Feng, Y., Y. Zhang, X. Quan, and S. Chen (2014) Enhanced anaerobic digestion of waste activated sludge digestion by the addition of zero valent iron. Water Res. 52: 242–250.

    Article  CAS  PubMed  Google Scholar 

  21. Mand, J., H. S. Park, T. R. Jack, and G. Voordouw (2014) The role of acetogens in microbially influenced corrosion of steel. Front. Microbiol. 5: 268.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Xu, D., Y. Li, F. Song, and T. Gu (2013) Laboratory investigation of microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing bacterium Bacillus licheniformis. Corros. Sci. 77: 385–390.

    Article  CAS  Google Scholar 

  23. Liu, B., Z. Li, X. Yang, C. Du, and X. Li (2020) Microbiologically influenced corrosion of X80 pipeline steel by nitrate reducing bacteria in artificial Beijing soil. Bioelectrochemistry 135: 107551.

    Article  CAS  PubMed  Google Scholar 

  24. Qian, H., D. Zhang, Y. Lou, Z. Li, D. Xu, C. Du, and X. Li (2018) Laboratory investigation of microbiologically influenced corrosion of Q235 carbon steel by halophilic archaea Natronorubrum tibetense. Corros. Sci. 145: 151–161.

    Article  CAS  Google Scholar 

  25. Kim, C., S. K. Ainala, Y.-K. Oh, B.-H. Jeon, S. Park, and J. R. Kim (2016) Metabolic flux change in Klebsiella pneumoniae L17 by anaerobic respiration in microbial fuel cell. Biotechnol. Bioprocess Eng. 21: 250–260.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research work was supported by a Two-Year Research Grant of Pusan National University, Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sang-Eun Oh or Jung Rae Kim.

Ethics declarations

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Im, H.S., Kong, D.S., Im, C.H. et al. Zero-valent Iron Enhances Acetate and Butyrate Production from Carbon Monoxide by Fonticella tunisiensis HN43. Biotechnol Bioproc E 28, 835–841 (2023). https://doi.org/10.1007/s12257-023-0033-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-023-0033-4

Keywords

Navigation