Skip to main content
Log in

Identification Process and Physiological Properties of Transporters of Carboxylic Acids in Escherichia coli

  • Review Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Carboxylic acids (CAs) are important organic compounds that participate in various cellular metabolic pathways. Since maintenance of intracellular CA concentration is vital for cell growth, cells utilize transporter systems to regulate CA concentration based on the cell growth phase and extracellular environmental conditions. Metabolic engineering has received a considerable amount of attention in recent years, and although the importance of membrane transporters has been overlooked for decades, the scientific community and biotechnology companies have finally turned their attention to transporter engineering as a method to improve production efficiency in microbial cell factories. Several physiological and genetic studies conducted to date have deepened our understanding of CA transporters. In this review, we summarized the current knowledge about CA transporters in Escherichia coli, including the identification process and physiological properties of transporters, and regulation of transporter expression and activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, J., L. Rong, Y. Zhao, S. Li, C. Zhang, D. Xiao, J. L. Foo, and A. Yu (2020) Next-generation metabolic engineering of non-conventional microbial cell factories for carboxylic acid platform chemicals. Biotechnol. Adv. 43: 107605.

    Article  CAS  Google Scholar 

  2. Jarboe, L. R., L. A. Royce, and P. Liu (2013) Understanding biocatalyst inhibition by carboxylic acids. Front. Microbiol. 4: 272.

    Article  Google Scholar 

  3. Kell, D. B., N. Swainston, P. Pir, and S. G. Oliver (2015) Membrane transporter engineering in industrial biotechnology and whole cell biocatalysis. Trends Biotechnol. 33: 237–246.

    Article  CAS  Google Scholar 

  4. Kaldenhoff, R., L. Kai, and N. Uehlein (2014) Aquaporins and membrane diffusion of CO2 in living organisms. Biochim. Biophys. Acta 1840: 1592–1595.

    Article  CAS  Google Scholar 

  5. Kai, L. and R. Kaldenhoff (2014) A refined model of water and CO2 membrane diffusion: effects and contribution of sterols and proteins. Sci. Rep. 4: 6665.

    Article  CAS  Google Scholar 

  6. Ishibashi, K., S. Kondo, S. Hara, and Y. Morishita (2011) The evolutionary aspects of aquaporin family. Am. J. Physiol. Regul. Integr. Comp. Physiol. 300: R566–R576.

    Article  CAS  Google Scholar 

  7. Bienert, G. P. and F. Chaumont (2014) Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide. Biochim. Biophys. Acta 1840: 1596–1604.

    Article  CAS  Google Scholar 

  8. Shayakul, C., B. Clémençon, and M. A. Hediger (2013) The urea transporter family (SLC14): physiological, pathological and structural aspects. Mol. Aspects Med. 34: 313–322.

    Article  CAS  Google Scholar 

  9. Jiao, H., X. Song, C. Lai, H. Fang, Y. Song, and J. Zhu (2021) Progress in preparation of cellulase from lignocellulose using fungi. Biotechnol. Bioprocess Eng. 26: 871–886.

    Article  CAS  Google Scholar 

  10. Akermann, A., J. Weiermüller, S. Lenz, J. Christmann, and R. Ulber (2021) Kinetic model for simultaneous saccharification and fermentation of brewers’ spent grain liquor using Lactobacillus delbrueckii Subsp. lactis. Biotechnol. Bioprocess Eng. 26: 114–124.

    Article  CAS  Google Scholar 

  11. Kim, S.-K. and J.-H. Auh (2021) Evaluating the engineered Saccharomyces cerevisiae with high spermidine contents for increased tolerance to lactic, succinic, and malic acids and increased xylose fermentation. Biotechnol. Bioprocess Eng. 26: 47–54.

    Article  CAS  Google Scholar 

  12. Zhang, G., X. Ren, X. Liang, Y. Wang, D. Feng, Y. Zhang, M. Xian, and H. Zou (2021) Improving the microbial production of amino acids: from conventional approaches to recent trends. Biotechnol. Bioprocess Eng. 26: 708–727.

    Article  CAS  Google Scholar 

  13. Lee, J. (2021) Lessons from clostridial genetics: toward engineering acetogenic bacteria. Biotechnol. Bioprocess Eng. 26: 841–858.

    Article  CAS  Google Scholar 

  14. van der Hoek, S. A. and I. Borodina (2020) Transporter engineering in microbial cell factories: the ins, the outs, and the in-betweens. Curr. Opin. Biotechnol. 66: 186–194.

    Article  CAS  Google Scholar 

  15. Zhu, Y., C. Zhou, Y. Wang, and C. Li (2020) Transporter engineering for microbial manufacturing. Biotechnol. J. 15: e1900494.

    Article  Google Scholar 

  16. Eng, T., P. Demling, R. A. Herbert, Y. Chen, V. Benites, J. Martin, A. Lipzen, E. Baidoo, L. M. Blank, C. J. Petzold, and A. Mukhopadhyay (2018) Restoration of biofuel production levels and increased tolerance under ionic liquid stress is enabled by a mutation in the essential Escherichia coli gene cydC. Microb. Cell Fact. 17: 159.

    Article  CAS  Google Scholar 

  17. Kiefer, D., M. Merkel, L. Lilge, M. Henkel, and R. Hausmann (2021) From acetate to bio-based products: underexploited potential for industrial biotechnology. Trends Biotechnol. 39: 397–411.

    Article  CAS  Google Scholar 

  18. Protzko, R. J., L. N. Latimer, Z. Martinho, E. de Reus, T. Seibert, J. P. Benz, and J. E. Dueber (2018) Engineering Saccharomyces cerevisiae for co-utilization of D-galacturonic acid and D-glucose from citrus peel waste. Nat. Commun. 9: 5059.

    Article  Google Scholar 

  19. Werpy, T. and G. Petersen (2004) Top Value Added Chemicals from Biomass: Vol. 1. Results of Screening for Potential Candidates from Sugars and Synthesis Gas. U.S. Department of Energy, Oak Ridge, TN, USA.

    Google Scholar 

  20. Genee, H. J., A. P. Bali, S. D. Petersen, S. Siedler, M. T. Bonde, L. S. Gronenberg, M. Kristensen, S. J. Harrison, and M. O. Sommer (2016) Functional mining of transporters using synthetic selections. Nat. Chem. Biol. 12: 1015–1022.

    Article  CAS  Google Scholar 

  21. Kim, S., S. H. Jin, H. G. Lim, B. Lee, J. Kim, J. Yang, S. W. Seo, C.-S. Lee, and G. Y. Jung (2021) Synthetic cellular communication-based screening for strains with improved 3-hydroxypropionic acid secretion. Lab Chip 21: 4455–4463.

    Article  CAS  Google Scholar 

  22. Belaich, A. and J. P. Belaich (1976) Microcalorimetric study of the anaerobic growth of Escherichia coli: growth thermograms in a synthetic medium. J. Bacteriol. 125: 14–18.

    Article  CAS  Google Scholar 

  23. Hakobyan, B., C. Pinske, G. Sawers, A. Trchounian, and K. Trchounian (2018) pH and a mixed carbon-substrate spectrum influence FocA- and FocB-dependent, formate-driven H2 production in Escherichia coli. FEMS Microbiol. Lett. 365: https://doi.org/10.1093/femsle/my233.

  24. Trchounian, K., A. Poladyan, A. Vassilian, and A. Trchounian (2012) Multiple and reversible hydrogenases for hydrogen production by Escherichia coli: dependence on fermentation substrate, pH and the F(0)F(1)-ATPase. Crit. Rev. Biochem. Mol. Biol. 47: 236–249.

    Article  CAS  Google Scholar 

  25. Russell, J. B. and F. Diez-Gonzalez (1998) The effects of fermentation acids on bacterial growth. Adv. Microb. Physiol. 39: 205–234.

    Article  CAS  Google Scholar 

  26. Trchounian, K. and A. Trchounian (2014) Different role of focA and focB encoding formate channels for hydrogen production by Escherichia coli during glucose or glycerol fermentation. Int. J. Hydrogen Energy 39: 20987–20991.

    Article  CAS  Google Scholar 

  27. Suppmann, B. and G. Sawers (1994) Isolation and characterization of hypophosphite—resistant mutants of Escherichia coli: identification of the FocA protein, encoded by the pfl operon, as a putative formate transporter. Mol. Microbiol. 11: 965–982.

    Article  CAS  Google Scholar 

  28. Andrews, S. C., B. C. Berks, J. McClay, A. Ambler, M. A. Quail, P. Golby, and J. R. Guest (1997) A 12-cistron Escherichia coli operon (hyf) encoding a putative proton-translocating formate hydrogenlyase system. Microbiology (Reading) 143: 3633–3647.

    Article  CAS  Google Scholar 

  29. Dong, J. M., J. S. Taylor, D. J. Latour, S. Iuchi, and E. C. Lin (1993) Three overlapping lct genes involved in L-lactate utilization by Escherichia coli. J. Bacteriol. 175: 6671–6678.

    Article  CAS  Google Scholar 

  30. Núñez, M. F., M. Teresa Pellicer, J. Badi A, J. Aguilar, and L. Baldomà (2001) The gene yghK linked to the glc operon of Escherichia coli encodes a permease for glycolate that is structurally and functionally similar to L-lactate permease. Microbiology (Reading) 147: 1069–1077.

    Article  Google Scholar 

  31. Núñez, M. F., O. Kwon, T. H. Wilson, J. Aguilar, L. Baldoma, and E. C. C. Lin (2002) Transport of L-Lactate, D-Lactate, and glycolate by the LldP and GlcA membrane carriers of Escherichia coli. Biochem. Biophys. Res. Commun. 290: 824–829.

    Article  Google Scholar 

  32. Kumari, S., R. Tishel, M. Eisenbach, and A. J. Wolfe (1995) Cloning, characterization, and functional expression of acs, the gene which encodes acetyl coenzyme A synthetase in Escherichia coli. J. Bacteriol. 177: 2878–2886.

    Article  CAS  Google Scholar 

  33. Kumari, S., C. M. Beatty, D. F. Browning, S. J. Busby, E. J. Simel, G. Hovel-Miner, and A. J. Wolfe (2000) Regulation of acetyl coenzyme A synthetase in Escherichia coli. J. Bacteriol. 182: 4173–4179.

    Article  CAS  Google Scholar 

  34. Gimenez, R., M. F. Nuñez, J. Badia, J. Aguilar, and L. Baldoma (2003) The gene yjcG, cotranscribed with the gene acs, encodes an acetate permease in Escherichia coli. J. Bacteriol. 185: 6448–6455.

    Article  CAS  Google Scholar 

  35. Sá-Pessoa, J., S. Paiva, D. Ribas, I. J. Silva, S. C. Viegas, C. M. Arraiano, and M. Casal (2013) SATP (YaaH), a succinate-acetate transporter protein in Escherichia coli. Biochem. J. 454: 585–595.

    Article  Google Scholar 

  36. Förster, A. H. and J. Gescher (2014) Metabolic engineering of Escherichia coli for production of mixed-acid fermentation end products. Front. Bioeng. Biotechnol. 2: 16.

    Google Scholar 

  37. Vemuri, G. N., E. Altman, D. P. Sangurdekar, A. B. Khodursky, and M. A. Eiteman (2006) Overflow metabolism in Escherichia coli during steady-state growth: transcriptional regulation and effect of the redox ratio. Appl. Environ. Microbiol. 72: 3653–3661.

    Article  CAS  Google Scholar 

  38. Behr, S., I. Kristoficova, M. Witting, E. J. Breland, A. R. Eberly, C. Sachs, P. Schmitt-Kopplin, M. Hadjifrangiskou, and K. Jung (2017) Identification of a high-affinity pyruvate receptor in Escherichia coli. Sci. Rep. 7: 1388.

    Article  Google Scholar 

  39. Kristoficova, I., C. Vilhena, S. Behr, and K. Jung (2018) BtsT, a novel and specific pyruvate/H+ symporter in Escherichia coli. J. Bacteriol. 200: e00599–17.

    Article  CAS  Google Scholar 

  40. Hwang, S., D. Choe, M. Yoo, S. Cho, S. C. Kim, S. Cho, and B.-K. Cho (2018) Peptide transporter CstA imports pyruvate in Escherichia coli K-12. J. Bacteriol. 200: e00771–17.

    Article  CAS  Google Scholar 

  41. Gasperotti, A., S. Göing, E. Fajardo-Ruiz, I. Forné, and K. Jung (2020) Function and regulation of the pyruvate transporter CstA in Escherichia coli. Int. J. Mol. Sci. 21: 9068.

    Article  CAS  Google Scholar 

  42. Dubey, A. K., C. S. Baker, K. Suzuki, A. D. Jones, P. Pandit, T. Romeo, and P. Babitzke (2003) CsrA regulates translation of the Escherichia coli carbon starvation gene, cstA, by blocking ribosome access to the cstA transcript. J. Bacteriol. 185: 4450–4460.

    Article  CAS  Google Scholar 

  43. Unden, G., A. Strecker, A. Kleefeld, and O. B. Kim (2016) C4-dicarboxylate utilization in aerobic and anaerobic growth. EcoSal Plus 7: https://doi.org/10.1128/ecosalplus.ESP-0021-2015.

  44. Six, S., S. C. Andrews, G. Unden, and J. R. Guest (1994) Escherichia coli possesses two homologous anaerobic C4-dicarboxylate membrane transporters (DcuA and DcuB) distinct from the aerobic dicarboxylate transport system (Dct). J. Bacteriol. 176: 6470–6478.

    Article  CAS  Google Scholar 

  45. Baker, K. E., K. P. Ditullio, J. Neuhard, and R. A. Kelln (1996) Utilization of orotate as a pyrimidine source by Salmonella typhimurium and Escherichia coli requires the dicarboxylate transport protein encoded by dctA. J. Bacteriol. 178: 7099–7105.

    Article  CAS  Google Scholar 

  46. Davies, S. J., P. Golby, D. Omrani, S. A. Broad, V. L. Harrington, J. R. Guest, D. J. Kelly, and S. C. Andrews (1999) Inactivation and regulation of the aerobic C(4)-dicarboxylate transport (dctA) gene of Escherichia coli. J. Bacteriol. 181: 5624–5635.

    Article  CAS  Google Scholar 

  47. Karinou, E., E. L. R. Compton, M. Morel, and A. Javelle (2013) The Escherichia coli SLC26 homologue YchM (DauA) is a C(4)-dicarboxylic acid transporter. Mol. Microbiol. 87: 623–640.

    Article  CAS  Google Scholar 

  48. Unden, G., S. Wörner, and C. Monzel (2016) Cooperation of secondary transporters and sensor kinases in transmembrane signalling: the DctA/DcuS and DcuB/DcuS sensor complexes of Escherichia coli. Adv. Microb. Physiol. 68: 139–167.

    Article  CAS  Google Scholar 

  49. Strecker, A., C. Schubert, S. Zedler, P. Steinmetz, and G. Unden (2018) DcuA of aerobically grown Escherichia coli serves as a nitrogen shuttle (L-aspartate/fumarate) for nitrogen uptake. Mol. Microbiol. 109: 801–811.

    Article  CAS  Google Scholar 

  50. Golby, P., D. J. Kelly, J. R. Guest, and S. C. Andrews (1998) Transcriptional regulation and organization of the dcuA and dcuB genes, encoding homologous anaerobic C4-dicarboxylate transporters in Escherichia coli. J. Bacteriol. 180: 6586–6596.

    Article  CAS  Google Scholar 

  51. Kleefeld, A., B. Ackermann, J. Bauer, J. Kra Mer, and G. Unden (2009) The fumarate/succinate antiporter DcuB of Escherichia coli is a bifunctional protein with sites for regulation of DcuS-dependent gene expression. J. Biol. Chem. 284: 265–275.

    Article  CAS  Google Scholar 

  52. Zientz, E., S. Six, and G. Unden (1996) Identification of a third secondary carrier (DcuC) for anaerobic C4-dicarboxylate transport in Escherichia coli: roles of the three Dcu carriers in uptake and exchange. J. Bacteriol. 178: 7241–7247.

    Article  CAS  Google Scholar 

  53. Pos, K. M., P. Dimroth, and M. Bott (1998) The Escherichia coli citrate carrier CitT: a member of a novel eubacterial transporter family related to the 2-oxoglutarate/malate translocator from spinach chloroplasts. J. Bacteriol. 180: 4160–4165.

    Article  CAS  Google Scholar 

  54. Kim, O. B. and G. Unden (2007) The L-tartrate/succinate antiporter TtdT (YgjE) of L-tartrate fermentation in Escherichia coli. J. Bacteriol. 189: 1597–1603.

    Article  CAS  Google Scholar 

  55. Oshima, T. and F. Biville (2006) Functional identification of ygiP as a positive regulator of the ttdA-ttdB-ygjE operon. Microbiology (Reading) 152: 2129–2135.

    Article  CAS  Google Scholar 

  56. Kim, O. B., J. Reimann, H. Lukas, U. Schumacher, J. Grimpo, P. Dünnwald, and G. Unden (2009) Regulation of tartrate metabolism by TtdR and relation to the DcuS-DcuR-regulated C4-dicarboxylate metabolism of Escherichia coli. Microbiology (Reading) 155: 3632–3640.

    Article  CAS  Google Scholar 

  57. Seol, W. and A. J. Shatkin (1991) Escherichia coli kgtP encodes an alpha-ketoglutarate transporter. Proc. Natl. Acad. Sci. U. S. A. 88: 3802–3806. (Erratum published 1991, Proc. Natl. Acad. Sci. U. S. A. 88: 5477)

    Article  CAS  Google Scholar 

  58. Seol, W. and A. J. Shatkin (1992) Escherichia coli alphaketoglutarate permease is a constitutively expressed proton symporter. J. Biol. Chem. 267: 6409–6413.

    Article  CAS  Google Scholar 

  59. Cai, W., X. Cai, Y. Yang, S. Yan, and H. Zhang (2017) Transcriptional control of dual transporters involved in α-ketoglutarate utilization reveals their distinct roles in uropathogenic Escherichia coli. Front. Microbiol. 8: 275.

    Article  Google Scholar 

  60. Clark, D. P. (1990) Molybdenum cofactor negative mutants of Escherichia coli use citrate anaerobically. FEMS Microbiol. Lett. 55: 245–249.

    Article  CAS  Google Scholar 

  61. Takahashi, S., M. Miyachi, H. Tamaki, and H. Suzuki (2021) The Escherichia coli CitT transporter can be used as a succinate exporter for succinate production. Biosci. Biotechnol. Biochem. 85: 981–988.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Korea Institute of Marine Science & Technology Promotion (KIMST) funded by the Ministry of Ocean and Fisheries (20220258).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyoo Yeol Jung.

Ethics declarations

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Lee, H.K. & Jung, G.Y. Identification Process and Physiological Properties of Transporters of Carboxylic Acids in Escherichia coli. Biotechnol Bioproc E 27, 900–908 (2022). https://doi.org/10.1007/s12257-022-0305-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-022-0305-4

Keywords

Navigation