Skip to main content
Log in

Enhanced Fatty Acid Productivity by Parachlorella sp., a Freshwater Microalga, via Adaptive Laboratory Evolution Under Salt Stress

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Salt stress can be used to increase intracellular lipid content of microalgae. However, the growth of microalgae is decreased under salt stress. Thus, a two-stage cultivation strategy with a growth phase followed by a stress stage is required to improve lipid content. In this study, adaptive laboratory evolution (ALE) with salt stress was conducted to improve biomass and fatty acid (FA) productivity using a locally isolated freshwater microalga Parachlorella sp. in a single-stage cultivation. Algal cell growth and FA production under conditions of salt stress (0–40 g of NaCl/L) were compared to those in a 0.5 L bubble column photobioreactor and appropriate levels of salt stress (10 and 20 g/L) were determined for ALE. During the ALE process, the average cell size increased from 3.0 to 3.9 µm. After eight consecutive ALE cycles, microalgal growth rate was remarkably increased to close to that of the culture without salt stress. Furthermore, FA content in microalga was improved from 7.5% to 25%. This result was confirmed by observations with various types of microscopes. Eventually, overall FA productivity was increased up to 219.0 ± 10.7 mg/L/day with the addition of 20 g of NaCl/L, which was 233% greater than that of the culture without salt stress (93.8 ± 5.3 mg/L/day) due to increased FA content. Recovered biomass productivity was 80% of that in the culture without salt stress. These results suggest that microalgal FA production can be significantly improved by a simple ALE process without an additional stress culture step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ramanna, L., I. Rawat, and F. Bux (2017) Light enhancement strategies improve microalgal biomass productivity. Renew. Sust. Energy Rev. 80: 765–773.

    Article  Google Scholar 

  2. Lee, H. S., Z. H. Kim, H. Park, and C. G. Lee (2016) Specific light uptake rates can enhance astaxanthin productivity in Haematococcus lacustris. Bioprocess Biosyst. Eng. 39: 815–823.

    Article  CAS  Google Scholar 

  3. Begum, H., F. M. Yusoff, S. Banerjee, H. Khatoon, and M. Shariff (2016) Availability and utilization of pigments from microalgae. Crit. Rev. Food Sci. Nutr. 56: 2209–2222.

    Article  CAS  Google Scholar 

  4. Kim, Z. H., Y. S. Park, Y. J. Ryu, and C. G. Lee (2017) Enhancing biomass and fatty acid productivity of Tetraselmis sp. in bubble column photobioreactors by modifying light quality using light filters. Biotechnol. Bioprocess Eng. 22: 397–404.

    Article  CAS  Google Scholar 

  5. Zhang, T. Y., H. Y. Hu, Y. H. Wu, L. L. Zhuang, X. Q. Xu, X. X. Wang, and G. H. Dao (2016) Promising solutions to solve the bottlenecks in the large-scale cultivation of microalgae for biomass/bioenergy production. Renew. Sust. Energy Rev. 60: 1602–1614.

    Article  CAS  Google Scholar 

  6. Salama, E. S., M. B. Kurade, R. A. I. Abou-Shanab, M. M. El-Dalatony, I. S. Yang, B. Min, and B. H. Jeon (2017) Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation. Renew. Sust. Energy Rev. 79: 1189–1211.

    Article  CAS  Google Scholar 

  7. Derakhshandeh, M. and U. T. Un (2019) Optimization of microalgae Scenedesmus sp. growth rate using a central composite design statistical approach. Biomass Bioeng. 122: 211–220.

    Article  CAS  Google Scholar 

  8. Tran, H. L., J. S. Kwon, Z. H. Kim, Y. Oh, and C. G. Lee (2010) Statistical optimization of culture media for growth and lipid production of Botryococcus braunii LB572. Biotechnol. Bioprocess Eng. 15: 277–284.

    Article  CAS  Google Scholar 

  9. Larkum, A. W. D., I. L. Ross, O. Kruse, and B. Hankamer (2012) Selection, breeding and engineering of microalgae for bioenergy and biofuel production. Trends Biotechnol. 30: 198–205.

    Article  CAS  Google Scholar 

  10. Park, H., D. Jung, J. Lee, P. Kim, Y. Cho, I. Jung, Z. H. Kim, S. M. Lim, and C. G. Lee (2018) Improvement of biomass and fatty acid productivity in ocean cultivation of Tetraselmis sp. using hypersaline medium. J. Appl. Phycol. 30: 2725–2735.

    Article  CAS  Google Scholar 

  11. Wang, Y., B. He, Z. Sun, and Y. F. Chen (2016) Chemically enhanced lipid production from microalgae under low suboptimal temperature. Algal Res. 16: 20–27.

    Article  Google Scholar 

  12. Ra, C. H., C. H. Kang, N. K. Kim, C. G. Lee, and S. K. Kim (2015) Cultivation of four microalgae for biomass and oil production using a two-stage culture strategy with salt stress. Renew. Energy. 80: 117–122.

    Article  CAS  Google Scholar 

  13. Kim, B. H., R. Ramanan, Z. Kang, D. H. Cho, H. M. Oh, and H. S. Kim (2016) Chlorella sorokiniana HS1, a novel freshwater green algal strain, grows and hyperaccumulates lipid droplets in seawater salinity. Biomass Bioenerg. 85: 300–305.

    Article  CAS  Google Scholar 

  14. Li, Y., H. Xu, F. Han, J. Mu, D. Chen, B. Feng, and H. Zeng (2015) Regulation of lipid metabolism in the green microalga Chlorella protothecoides by heterotrophy-photoinduction cultivation regime. Bioresour. Technol. 192: 781–791.

    Article  CAS  Google Scholar 

  15. Fu, W., O. Gudmundsson, A. M. Feist, G. Herjolfsson, S. Brynjolfsson, and B. Ø. Palsson (2012) Maximizing biomass productivity and cell density of Chlorella vulgaris by using light-emitting diode-based photobioreactor. J. Biotechnol. 161: 242–249.

    Article  CAS  Google Scholar 

  16. Sun, X. M., L. J. Ren, Z. Q. Bi, X. J. Ji, Q. Y. Zhao, L. Jiang, and H. Huang (2018) Development of a cooperative two-factor adaptive-evolution method to enhance lipid production and prevent lipid peroxidation in Schizochytrium sp. Biotechnol. Biofuels. 11: 65.

    Article  Google Scholar 

  17. Tran, H. L., S. J. Hong, and C. G. Lee (2009) Evaluation of extraction methods for recovery of fatty acids from Botryococcus braunii LB 572 and Synechocystis sp. PCC 6803. Biotechnol. Bioprocess Eng. 14: 187–192.

    Article  CAS  Google Scholar 

  18. Spurr, A. R. (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 26: 31–43.

    Article  CAS  Google Scholar 

  19. Reynolds, E. S. (1963) Liver parenchymal cell injury: I. Initial alterations of the cell following poisoning with carbon tetrachloride. J. Cell Biol. 19: 139–157.

    Article  CAS  Google Scholar 

  20. Kim, Z. H., H. Park, Y. J. Ryu, D. W. Shin, S. J. Hong, H. L. Tran, S. M. Lim, and C. G. Lee (2015) Algal biomass and biodiesel production by utilizing the nutrients dissolved in seawater using semi-permeable membrane photobioreactors. J. Appl. Phycol. 27: 1763–1773.

    Article  CAS  Google Scholar 

  21. Talebi, A. F., M. Tabatabaei, S. K. Mohtashami, M. Tohidfar, and F. Moradi (2013) Comparative salt stress study on intracellular ion concentration in marine and salt-adapted freshwater strains of microalgae. Not. Sci. Biol. 5: 309–315.

    Article  CAS  Google Scholar 

  22. Allakhverdiev, S. I., A. Sakamoto, Y. Nishiyama, M. Inaba, and N. Murata (2000) Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp. Plant Physiol. 123: 1047–1056.

    Article  CAS  Google Scholar 

  23. Takagi, M., Karseno, and T. Yoshida (2006) Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. J. Biosci. Bioeng. 101: 223–226.

    Article  CAS  Google Scholar 

  24. Fon-Sing, S. and M. A. Borowitzka (2016) Isolation and screening of euryhaline Tetraselmis spp. suitable for large-scale outdoor culture in hypersaline media for biofuels. J. Appl. Phycol. 28: 1–14.

    Article  CAS  Google Scholar 

  25. Church, J., J. H. Hwang, K. T. Kim, R. McLean, Y. K. Oh, B. Nam, J. C. Joo, and W. H. Lee (2017) Effect of salt type and concentration on the growth and lipid content of Chlorella vulgaris in synthetic saline wastewater for biofuel production. Bioresour. Technol. 243: 147–153.

    Article  CAS  Google Scholar 

  26. Klok, A. J., P. P. Lamers, D. E. Martens, R. B. Draaisma, and R. H. Wijffels (2014) Edible oils from microalgae: insights in TAG accumulation. Trends Biotechnol. 32: 521–528.

    Article  CAS  Google Scholar 

  27. Wang, D., W. Wang, N. Xu, and X. Sun (2016) Changes in growth, carbon and nitrogen enzyme activity and mRNA accumulation in the halophilic microalga Dunaliella viridis in response to NaCl stress. J. Ocean Univ. China. 15: 1094–1100.

    Article  CAS  Google Scholar 

  28. Takeshita, T., S. Ota, T. Yamazaki, A. Hirata, V. Zachleder, and S. Kawano (2014) Starch and lipid accumulation in eight strains of six Chlorella species under comparatively high light intensity and aeration culture conditions. Bioresour. Technol. 158: 127–134.

    Article  CAS  Google Scholar 

  29. Mujtaba, G., W. Choi, C. G. Lee, and K. Lee (2012) Lipid production by Chlorella vulgaris after a shift from nutrient-rich to nitrogen starvation conditions. Bioresour. Technol. 123: 279–283.

    Article  CAS  Google Scholar 

Download references

Acknowldgments

This study was supported by a grant (Project No. NNIBR202102104) from Nakdonggang National Institute of Biological Resources funded by the Ministry of Environment of the Korean government. This work was also supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2019R1I1A1A 01042404). The authors would like to thank Ms. Ye Ji Park for experimental assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z.-Hun Kim.

Additional information

Ethical Statements

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, ZH., Kim, K., Park, H. et al. Enhanced Fatty Acid Productivity by Parachlorella sp., a Freshwater Microalga, via Adaptive Laboratory Evolution Under Salt Stress. Biotechnol Bioproc E 26, 223–231 (2021). https://doi.org/10.1007/s12257-020-0001-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-020-0001-1

Keywords

Navigation