Skip to main content
Log in

Hyperosmotic Adaptation of Pseudomonas protegens SN15-2 Helps Cells to Survive at Lethal Temperatures

  • Research Paper
  • Applied Microbiology
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Pseudomonas protegens is a gram-negative bacterium with an excellent biological control effect. Compared to standard cells growing in NaCl-free media, the ability of the hyperosmotic cells (450 mM NaCl) to resist high temperatures and freezing was significantly improved. It is of great significance to apply the P. protegens to elaborate on the hyperosmotic adaptation mechanism. RNA-seq was used to sequence P. protegens cultured with 0 mM and 450 mM NaCl. Comparative transcriptomic analyses of the different treatments were performed using gene ontology and the Kyoto encyclopedia of genes and genome. The results revealed that hyperosmotic stress had prominent impacts on the genes involving in multiple cellular functions. The hyperosmotic environment significantly affected carbohydrate, energy, and amino acid metabolism, as well as membrane system and cell motility. Our findings indicated that P. protegens adopted a series of approaches, including the high cytoplasmic concentrations of potassium ions and the uptake or synthesis of osmoprotectants, for surviving hyperosmotic stress. Among these, trehalose and proline synthesis appeared to be an important method to withstand prolonged hyperosmotic stress in P. protegens. These data provide crucial resource that may determine specific responses to the hyperosmotic environment in P. protegens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. Bonaterra, A., L. Ruz, E. Badosa, J. Pinochet, and E. Montesinos (2003) Growth promotion of Prunus rootstocks by root treatment with specific bacterial strains. Plant Soil. 255: 555–569.

    CAS  Google Scholar 

  2. Krimm, U., D. Abanda-Nkpwatt, W. Schwab, and L. Schreiber (2005) Epiphytic microorganisms on strawberry plants (Fragaria ananassa cv. Elsanta): identification of bacterial isolates and analysis of their interaction with leaf surfaces. FEMS Microbiol Ecol. 53: 483–492.

    CAS  PubMed  Google Scholar 

  3. Walsh, U. F., J. P. Morrissey, and F. O’Gara (2001) Pseudomonas for biocontrol of phytopathogens: from functional genomics to commercial exploitation. Curr. Opin. Biotechnol. 12: 289–295.

    CAS  PubMed  Google Scholar 

  4. Rajkumar, M., L. B. Bruno, and J. R. Banu (2017) Alleviation of environmental stress in plants: The role of beneficial Pseudomonas spp. Crit. Rev. Environ. Sci. Technol. 47: 372–407.

    Google Scholar 

  5. Ramette, A., M. Frapolli, M. Fischer-Le Saux, C. Gruffaz, J. M. Meyer, G. Defago, L. Sutra, and Y. Moenne-Loccoz (2011) Pseudomonas protegens sp. nov., widespread plant-protecting bacteria producing the biocontrol compounds 2,4-diacetylphloroglucinol and pyoluteorin. Syst Appl Microbiol. 34: 180–188.

    CAS  PubMed  Google Scholar 

  6. Haas, D. and G. Defago (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol. 3: 307–319.

    CAS  PubMed  Google Scholar 

  7. Lou, H., X. Wang, J. Chen, B. Wang, and W. Wang (2018) Transcriptomic response of Ralstonia solanacearum to antimicrobial Pseudomonas fluorescens SN15-2 metabolites. Can. J. Microbiol. 64: 816–825.

    CAS  PubMed  Google Scholar 

  8. den Besten, H. M. W., E. J. van der Mark, L. Hensen, T. Abee, and M. H. Zwietering (2010) Quantification of the effect of culturing temperature on salt-induced heat resistance of Bacillus species. Appl Environ Microbiol. 76: 4286–4292.

    Google Scholar 

  9. Amiet-Charpentier, C., P. Gadille, and J. P. Benoit (1999) Rhizobacteria microencapsulation: properties of microparticles obtained by spray-drying. J. Microencapsul. 16: 215–229.

    CAS  PubMed  Google Scholar 

  10. Caspeta, L., Y. Chen, P. Ghiaci, A. Feizi, S. Buskov, B. M. Hallstrom, D. Petranovic, and J. Nielsen (2014) Altered sterol composition renders yeast thermotolerant. Science. 346: 75–78.

    CAS  PubMed  Google Scholar 

  11. Cabrefiga, J., J. Frances, E. Montesinos, and A. Bonaterra (2011) Improvement of fitness and efficacy of a fire blight biocontrol agent via nutritional enhancement combined with osmoadaptation. Appl Environ Microbiol. 77: 3174–3181.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Bonaterra, A., J. Camps, and E. Montesinos (2005) Osmotically induced trehalose and glycine betaine accumulation improves tolerance to desiccation, survival and efficacy of the postharvest biocontrol agent Pantoea agglomerans EPS125. FEMS Microbiol. Lett. 250: 1–8.

    CAS  PubMed  Google Scholar 

  13. Cabrefiga, J., J. Frances, E. Montesinos, and A. Bonaterra (2014) Improvement of a dry formulation of Pseudomonas fluorescens EPS62e for fire blight disease biocontrol by combination of culture osmoadaptation with a freeze-drying lyoprotectant. J. Appl. Microbiol. 117: 1122–1131.

    CAS  PubMed  Google Scholar 

  14. Liu, L., L. Si, X. Meng, and L. Luo (2015) Comparative transcriptomic analysis reveals novel genes and regulatory mechanisms of Tetragenococcus halophilus in response to salt stress. J. Ind. Microbiol. Biotechnol. 42: 601–616.

    CAS  PubMed  Google Scholar 

  15. Obruca, S., P. Sedlacek, V. Krzyzanek, F. Mravec, K. Hrubanova, O. Samek, D. Kucera, P. Benesova, and I. Marova (2016) Accumulation of poly(3-hydroxybutyrate) helps bacterial cells to survive freezing. PLoS One. 11: e0157778.

    PubMed  PubMed Central  Google Scholar 

  16. Li, B. and C. N. Dewey (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 12: 323.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Robinson, M. D., D. J. McCarthy, and G. K. Smyth (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 26: 139–140.

    CAS  PubMed  Google Scholar 

  18. Xie, C., X. Mao, J. Huang, Y. Ding, J. Wu, S. Dong, L. Kong, G. Gao, C. Y. Li, and L. Wei (2011) KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 39: W316–W322.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang, L., J. Xu, J. Xu, H. Zhang, L. He, and J. Feng (2014) TssB is essential for virulence and required for Type VI secretion system in Ralstonia solanacearum. Microb. Pathog. 74: 1–7.

    PubMed  Google Scholar 

  20. Corbella, M. E. and A. Puyet (2003) Real-time reverse transcription-PCR analysis of expression of halobenzoate and salicylate catabolism-associated operons in two strains of Pseudomonas aeruginosa. Appl. Environ. Microbiol. 69: 2269–2275.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Beales, N. (2004) Adaptation of microorganisms to cold temperatures, weak acid preservatives, low pH, and osmotic stress: A review. Compr. Rev. Food Sci. Food Saf. 3: 1–20.

    CAS  Google Scholar 

  22. Marles-Wright, J. and R. J. Lewis (2007) Stress responses of bacteria. Curr. Opin. Struct. Biol. 17: 755–760.

    CAS  PubMed  Google Scholar 

  23. Koga, T., T. Katagiri, H. Hori, and K. Takumi (2002) Alkaline adaptation induces cross-protection against some environmental stresses and morphological change in Vibrio parahaemolyticus. Microbiol. Res. 157: 249–255.

    PubMed  Google Scholar 

  24. Ayub, N. D., M. J. Pettinari, B. S. Mendez, and N. I. Lopez (2007) The polyhydroxyalkanoate genes of a stress resistant Antarctic Pseudomonas are situated within a genomic island. Plasmid. 58: 240–248.

    CAS  PubMed  Google Scholar 

  25. Wu, D., J. He, Y. Gong, D. Chen, X. Zhu, N. Qiu, M. Sun, M. Li, and Z. Yu (2011) Proteomic analysis reveals the strategies of Bacillus thuringiensis YBT-1520 for survival under long-term heat stress. Proteomics. 11: 2580–2591.

    CAS  PubMed  Google Scholar 

  26. Raiger Iustman, L. J., P. M. Tribelli, J. G. Ibarra, M. V. Catone, E. C. Solar Venero, and N. I. López (2015) Genome sequence analysis of Pseudomonas extremaustralis provides new insights into environmental adaptability and extreme conditions resistance. Extremophiles. 19: 207–220.

    CAS  PubMed  Google Scholar 

  27. Pavez, P., J. L. Castillo, C. González, and M. Martínez (2009) Poly-β-hydroxyalkanoate exert a protective effect against carbon starvation and frozen conditions in Sphingopyxis chilensis. Curr. Microbiol. 59: 636–640.

    CAS  PubMed  Google Scholar 

  28. Obruca, S., P. Sedlacek, F. Mravec, V. Krzyzanek, J. Nebesarova, O. Samek, D. Kucera, P. Benesova, K. Hrubanova, M. Milerova, and I. Marova (2017) The presence of PHB granules in cytoplasm protects non-halophilic bacterial cells against the harmful impact of hypertonic environments. N Biotechnol. 39: 68–80.

    CAS  PubMed  Google Scholar 

  29. Yaakop, A. S., K. G. Chan, R. Ee, Y. L. Lim, S. K. Lee, F. Abd Manan, and K. M. Goh (2016) Characterization of the mechanism of prolonged adaptation to osmotic stress of Jeotgalibacillus malaysiensis via genome and transcriptome sequencing analyses. Sci. Rep. 6: 33660.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Smulek, W., Z. Cybulski, U. Guzik, T. Jesionowski, and E. Kaczorek (2019) Three chlorotoluene-degrading bacterial strains: Differences in biodegradation potential and cell surface properties. Chemosphere. 237: 124452.

    CAS  PubMed  Google Scholar 

  31. Munns, R. (2002) Comparative physiology of salt and water stress. Plant Cell Environ. 25: 239–250.

    CAS  PubMed  Google Scholar 

  32. Fujita, Y., H. Matsuoka, and K. Hirooka (2007) Regulation of fatty acid metabolism in bacteria. Mol. Microbiol. 66: 829–839.

    CAS  PubMed  Google Scholar 

  33. Leesong, M., B. S. Henderson, J. R. Gillig, J. M. Schwab, and J. L. Smith (1996) Structure of a dehydratase-isomerase from the bacterial pathway for biosynthesis of unsaturated fatty acids: two catalytic activities in one active site. Structure. 4: 253–264.

    CAS  PubMed  Google Scholar 

  34. Reina-Bueno, M., M. Argandoña, J. J. Nieto, A. Hidalgo-García, F. Iglesias-Guerra, M. J. Delgado, and C. Vargas (2012) Role of trehalose in heat and desiccation tolerance in the soil bacterium Rhizobium etli. BMC Microbiol. 12: 207.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Yanhe, M., E. A. Galinski, W. D. Grant, A. Oren, and V. Antonio (2010) Halophiles 2010: life in saline environments. Appl. Environ. Microbiol. 76: 6971–6981.

    Google Scholar 

  36. Holtmann, G., E. P. Bakker, N. Uozumi, and E. Bremer (2003) KtrAB and KtrCD: Two K+ uptake systems in Bacillus subtilis and their role in adaptation to hypertonicity. J. Bacteriol. 185: 1289–1298.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Aspedon, A., K. Palmer, and M. Whiteley (2006) Microarray analysis of the osmotic stress response in Pseudomonas aeruginosa. J. Bacteriol. 188: 2721–2725.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Seo, S. W., Y. Gao, D. Kim, R. Szubin, J. Yang, B. K. Cho, and B. O. Palsson (2017) Revealing genome-scale transcriptional regulatory landscape of OmpR highlights its expanded regulatory roles under osmotic stress in Escherichia coli K-12 MG1655. Sci. Rep. 7: 2181.

    PubMed  PubMed Central  Google Scholar 

  39. Pastor, J. M., V. Bernal, M. Salvador, M. Argandona, C. Vargas, L. Csonka, A. Sevilla, J. L. Iborra, J. J. Nieto, and M. Canovas (2013) Role of central metabolism in the osmoadaptation of the halophilic bacterium Chromohalobacter salexigens. J. Biol. Chem. 288: 17769–17781.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Sleator, R. D. and C. Hill (2002) Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiol. Rev. 26: 49–71.

    CAS  PubMed  Google Scholar 

  41. Roberts, M. F. (2005) Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Systems. 1: 5.

    PubMed  PubMed Central  Google Scholar 

  42. Tonon, T. and A. Lonvaud-Funel (2000) Metabolism of arginine and its positive effect on growth and revival of Oenococcus oeni. J. Appl. Microbiol. 89: 526–531.

    CAS  PubMed  Google Scholar 

  43. Mira de Orduna, R., M. L. Patchett, S. Q. Liu, and G. J. Pilone (2001) Growth and arginine metabolism of the wine lactic acid bacteria Lactobacillus buchneri and Oenococcus oeni at different pH values and arginine concentrations. Appl. Environ. Microbiol. 67: 1657–1662.

    Google Scholar 

  44. Barron, A., G. May, E. Bremer, and M. Villarejo (1986) Regulation of envelope protein composition during adaptation to osmotic stress in Escherichia coli. J. Bacteriol. 167: 433–438.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Bremer, E. (2000) Coping with osmotic challenges: osmoregulation through accumulation and release of compatible solutes in B. subtilis. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 126: S17.

    Google Scholar 

  46. Marion, R. M., A. Regev, E. Segal, Y. Barash, D. Koller, N. Friedman, and E. K. O’Shea (2004) Sfp1 is a stress- and nutrient-sensitive regulator of ribosomal protein gene expression. Proc. Natl. Acad. Sci. USA. 101: 14315–14322.

    CAS  PubMed  Google Scholar 

  47. Maier, T., A. Schmidt, M. Guell, S. Kuhner, A. C. Gavin, R. Aebersold, and L. Serrano (2011) Quantification of mRNA and protein and integration with protein turnover in a bacterium. Mol. Syst. Biol. 7: 511.

    PubMed  PubMed Central  Google Scholar 

  48. Zgur-Bertok, D. (2013) DNA Damage repair and bacterial pathogens. PLoS Pathog. 9: e1003711.

    PubMed  PubMed Central  Google Scholar 

  49. Liu, Y., W. Gao, Y. Wang, L. Wu, X. Liu, T. Yan, E. Alm, A. Arkin, D. K. Thompson, M. W. Fields, and J. Zhou (2005) Transcriptome analysis of Shewanella oneidensis MR-1 in response to elevated salt conditions. J. Bacteriol. 187: 2501–2507.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Steil, L., T. Hoffmann, I. Budde, U. Völker, and E. Bremer (2003) Genome-wide transcriptional profiling analysis of adaptation of Bacillus subtilis to high salinity. J Bacteriol. 185: 6358–6370.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Funding: This work was supported by the National Key Research and Development Program of China under Grant number 2017YFD020040; the Project of Prospering Agriculture through Science and Technology of Shanghai, China under Grant number Hu NongKeChuangZi (2018) No. 2–5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang.

Ethics declarations

No potential conflict of interest was reported by the authors. Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Tang, D. & Wang, W. Hyperosmotic Adaptation of Pseudomonas protegens SN15-2 Helps Cells to Survive at Lethal Temperatures. Biotechnol Bioproc E 25, 403–413 (2020). https://doi.org/10.1007/s12257-019-0430-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-019-0430-x

Keyword

Navigation