Skip to main content
Log in

Synthesis and Biological Evaluation of New Benzylidenethiazolidine-2,4-dione Derivatives as 15-hydroxyprostaglandin Dehydrogenase Inhibitors to Control the Intracellular Levels of Prostaglandin E2 for Wound Healing

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

A novel series of benzylidenethiazolidine-2,4-dione derivatives was synthesized and investigated for 15-hydroxyprostaglandin dehydrogenase (15-PGDH)-scavenging activity, PGE2 release, and wound-healing activity. Among the tested derivatives, seven compounds (3, 9, 11, 12, 13, 14, and 25) resulted in a 50% inhibition of 15-PGDH at concentrations between 0.07 and 0.2 µM and increased PGE2 levels from 300 to over 600% in A549 cells treated with 5.0 and 10.0 µM of the compounds for 12 h. A scratch wound-healing assay using HaCaT cell line was conducted to verify the effects of 10 µM of these compounds on cell regeneration. The closure rate of the scratch wound healing showed that all compounds (3, 9, 11, 12, 13, 14, and 25) had greater wound regeneration effects than the cell growth factor, TGF-β1, which was used as the positive control. In particular, (Z)-N-benzyl-4-((2,4-dioxothiazolidin-5-ylidene)methyl)benzamide (compound 14) showed that the highest wound closure rate, which was 360%; this is about 3.6-fold higher than that of TGF-β1. Overall, these results show that compound 14 may be considered a promising candidate for the development of novel wound-healing agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sanon, S., D. A. Hart, and E. E. Tredget (2016) Molecular and cellular biology of wound healing and skin regeneration, Medicine, New York, Elsevier Inc., pp. 162–184.

    Google Scholar 

  2. Jeong, B. S. (2006) Structure-activity relationship study of asiatic acid derivatives for new wound healing agent. Arch. Pharma. Res. 29: 556–562.

    Article  CAS  Google Scholar 

  3. Halehatty, P., N. Prakash, S. Halehatty, N. Bhojya, R. Thangali, N. Ravikumar, N. Raja, K. Gouthamchandra, R. Mahmood, and B. M. Khadeer Ahame (2009) Synthesis of novel benzo[h]quinolines. European J. Med. Chem. 44: 981–989.

    Article  CAS  Google Scholar 

  4. Patrulea, V., N. Hirt-Bur, A. Jeannerat, L. A. Applegate, V. Ostafe, and O. G Jordan (2016) Borchard, Peptide-decorated chitosan derivatives enhance fibroblast adhesion and proliferation in wound healing. Carbohydrate Poly. 142: 114–123.

    Article  CAS  Google Scholar 

  5. Patrulea, V., V. Ostafe, G. Borchard, and O. Jordan (2015) Chitosan as a starting material for wound healing applications. European J. Pharma. Biopharma. 97: 417–426.

    Article  CAS  Google Scholar 

  6. Davidson, J. M., L. B. Nanney, K. N. Broadley, J. S. Whitsett, A. M. Aquino, M. Beccaro, and A. Rastrelli (1991) Hyaluronate derivatives and their application to wound healing. Clinical Mater. 8: 171–177.

    Article  CAS  Google Scholar 

  7. Valacchi, G., G Grisci, C. Sticozzi, Y. S. Lim, M. Paolino, G. Giuliani, R. Mendichi, G Belmonte, R. Artusi, A. Zanardi, P. Garofalo, G. Giorgi, A. Cappelli, and L. Rovati (2015) Wound healing properties of hyaluronan derivatives bearing ferulate residues. J. Mater. Chem. 35: 7037–7045.

    Article  CAS  Google Scholar 

  8. Lee, J. S., K. R. Lee, S. R. Lee, H.J. Lee, H. S. Yang, J. H. Yeo, J. M. Park, B. H. Choi and E. K. Hong (2017) Polysaccharides isolated from liquid culture broth of Inonotus obliquus inhibit the invasion of human non-small cell Lung carcinoma cells. Biotechnol. Bioprocess Eng. 22: 45–51.

    Article  CAS  Google Scholar 

  9. Oh, M. S., Y. J. Kim, Y. J. Son, H. S. Yoo, and J. H Park (2017) Promotive effects of human induced pluripotent stem cell- conditioned medium on the proliferation and migration of dermal fibroblasts. Biotechnol. Bioprocess Eng. 22: 561–568.

    Article  CAS  Google Scholar 

  10. Manjal, S. K., R. Kaur, R. Bhatia, K. Kumar, V. Singh, R. Shankar, R. Kaur, and R. K. Rawal (2017) Synthetic and medicinal perspective of thiazolidinones. Bioorganic Chem. 75: 406–423.

    Article  CAS  Google Scholar 

  11. Jo, D. R., Y. O. Kim, R. Kim, Y. C. Chang, D. B. Choi, and H. Cho (2017) Novel rhodanine derivatives are selective algicides against Microcystis aeruginosa. Biotechnol. Bioprocess Eng. 22: 748–757.

  12. You, D. S., Y. W. Lee, D. B. Choi, Y. C. Chang, and H. Cho (2017) Algicidal effects of thiazolinedione derivatives against Microcystis aeruginosa, Korean J. Chem. Eng. 34: 139–149.

    Article  CAS  Google Scholar 

  13. Choi, D. B., S. J. Yu, S. H. Baek, Y. H. Kang, Y. C. Chang, and H. Cho (2016) Synthesis and algicidal activity of new dichloro- benzylamine derivatives against harmful red tides. Biotechnol. Bioprocess Eng. 21: 463–476.

    Article  CAS  Google Scholar 

  14. Cho, H. and H. H. Tai (2002) Thiazolidinediones as a novel class of NAD+-dependent 15-hydroxyprostaglandin dehydrogenase inhibitors. Arch. Biochem. Biophys. 405: 247–251.

    Article  CAS  PubMed  Google Scholar 

  15. Wu, Y., H. H. Tai, and H. Cho (2010) Synthesis and SAR of thiazolidinedione derivatives as 15-PGDH inhibitors. Bioorg. Medicin. Chem. 18: 1428–1433.

    Article  CAS  Google Scholar 

  16. Niesen, F. H., L. Schultz, A. Jadhav, C. Bhatia 1, K. Guo, D. J. Maloney, E. S. Pilka, M. Wang, U. Oppermann, T. D. Heightman, and A. Simeonov (2010) High-affinity inhibitors of human NAD -dependent 15-hydroxyprostaglandin dehydrogenase: mechanisms of inhibition and structure activity relationships. PLoS One 5: 13719–13722.

    Article  CAS  Google Scholar 

  17. Wu, Y., S. D. Karna, C. H. Choi, M. Tong, H. H. Tai, D. H. Na, C. H. Jang, and H. Cho (2011) Synthesis and biological evaluation of novel thiazolidinedione analogues as 15-Hydroxyprostaglandin dehydrogenase inhibitors. J. Med. Chem. 54: 5260–5264.

    Article  CAS  PubMed  Google Scholar 

  18. Choi, D. B., Y. L. Piao, Y. Wub, and H. Cho (2013) Control of the intracellular levels of prostaglandin E2 through inhibition of the 15-hydroxyprostaglandin dehydrogenase for wound healing. Bioorganic Med. Chem. 21: 4477–4484.

    Article  CAS  Google Scholar 

  19. Piao, Y.L., S. A. Ram, and H. Cho (2015) Cell-based biological evaluations of 5-(3-bromo-4-phenethoxybenzylidene)thiazolidine- 2,4-dione as promising wound healing agent. Bioorganic Med. Chem. 23: 2098–103.

    Article  CAS  Google Scholar 

  20. Clark, R. A (1996) The molecular and cellular biology of wound repair, 2nd ed.; New York, Plenum, pp. 188–206.

    Google Scholar 

  21. Martin, P. (1997) Wound healing—aiming for perfect skin regeneration. Science 276: 75–81.

    Article  CAS  Google Scholar 

  22. Werner, S. and R. Grose (2003) Regulation of wound healing by growth factors and cytokines. Physiol. Rev. 83: 835–870.

    Article  CAS  PubMed  Google Scholar 

  23. Kolodsick, J. E., M. Peters-Golden, J. Larios, G. B. Toews, V. J. Thannickal, and B. B. Moore (2003) Prostaglandin E inhibits fibroblast to myofibroblast transition via E. prostanoid receptor 2 signaling and cyclic adenosine monophosphate elevation. American J. Resp. Cell Mole. Bio. 29: 537–544.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1B04930255).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dubok Choi or Hoon Cho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, I., Choi, D., Lee, HK. et al. Synthesis and Biological Evaluation of New Benzylidenethiazolidine-2,4-dione Derivatives as 15-hydroxyprostaglandin Dehydrogenase Inhibitors to Control the Intracellular Levels of Prostaglandin E2 for Wound Healing. Biotechnol Bioproc E 24, 464–475 (2019). https://doi.org/10.1007/s12257-019-0015-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-019-0015-8

Keywords

Navigation