Skip to main content
Log in

Mixed culture of probiotics on a solid-state medium: An efficient method to produce an affordable probiotic feed additive

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The overuse and abuse of antibiotics in animal husbandry is an ongoing problem. While probiotics could be an alternative, their effectiveness, stability and production cost are key factors that need to be addressed first. This study used a mixed culture of Bifidobacterium bifidum, Clostridium butyricum, Bacillus subtilis and Bacillus licheniformis on a simple and inexpensive solid-state medium generated by pouring a liquid MRS medium, which was designed to favor the dense growth of lactobacilli, onto wheat bran at a ratio of 1:2 by weight. Using this method, we achieved a very high number of live bacteria (NLB), at 3.93 × 1014 CFU/g, without the need for expensive anaerobic equipment. The mixed culture thus achieved striking results that were up to 10,000 times better than the pure culture and did not require special anaerobic equipment. A real-time PCR analysis demonstrated that the shares of the four strains in the mixed culture probiotics (MCPs) were 2, 17, 46, and 35%, respectively, which indicates that the fermentation product contained an uneven distribution of the four probiotic target bacteria. The MCPs possessed good storage stability at room temperature, and the NLB was greater than 106 CFU/g after 30 days at 25°C, which made it easier to transport and store. They also demonstrated good stability in artificial digestion fluids, with an NLB of over 1012 CFU/g after sequential treatments, which enabled them to maintain effectiveness in the animal gastrointestinal tract. Finally, the MCPs were fed to the mealworms (Tenebrio molitor) and raccoon dogs (Nyctereutes procyonoides) in order to test their effectiveness, and the growth rates of both significantly improved with the MCPs feeding. This study thus demonstrated that culturing MCPs on a solid-state medium is an efficient method to affordably produce probiotic feed additives that can improve the performance of very physiologically different animals, such as the mealworm and raccoon dog, which indicates their potential for very wide applicability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, Y. and W. Schwack (2014) High-performance thin-layer chromatography screening of multi class antibiotics in animal food by bioluminescent bioautography and electrospray ionization mass spectrometry. J. Chromatogr. A. 1356: 249–257.

    Article  CAS  PubMed  Google Scholar 

  2. Duncan, S. H. and H. J. Flint (2013) Probiotics and prebiotics and health in ageing populations. Maturitas 75: 44–50.

    Article  CAS  PubMed  Google Scholar 

  3. Wassenaar, T. M. and G. Klein (2008) Safety aspects and implications of regulation of probiotic bacteria in food and food supplements. J. Food Protect. 71: 1734–1741.

    Article  Google Scholar 

  4. Sugahara, H., T. Odamaki, S. Fukuda, T. Kato, J. Z. Xiao, and F. Abe (2015) Probiotic Bifidobacterium longum alters gut luminal metabolism through modification of the gut microbial community. Sci. Rep. 5: 13548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. de Vries, W. and A. H. Stouthamer (1968) Fermentation of glucose, lactose, galactose, mannitol, and xylose by bifidobacteria. J. Bacteriol. 96: 472–478.

    PubMed  PubMed Central  Google Scholar 

  6. de Roos, N. M. and M. B. Katan (2000) Effects of probiotic bacteria on diarrhea, lipid metabolism, and carcinogenesis: A review of papers published between 1988 and 1998. Am. J. Clin. Nutr. 71: 405–411.

    Article  PubMed  Google Scholar 

  7. Turroni, F., E. Foroni, P. Pizzetti, V. Giubellini, A. Ribbera, and P. Merusi (2009) Exploring the diversity of the bifidobacterial population in the human intestinal tract. Appl. Environ. Microb. 75: 1534–1545.

    Article  CAS  Google Scholar 

  8. Meng, Q. W., L. Yan, X. Ao, T. X. Zhou, J. P. Wang, and J. H. Lee (2010) Influence of probiotics in different energy and nutrient density diets on growth performance, nutrient digestibility, meat quality, and blood characteristics in growing-finishing pigs. J. Anim. Sci. 88: 3320–3326.

    Article  CAS  PubMed  Google Scholar 

  9. Guo X., D. Li, W. Lu, X. Piao, and X. Chen (2006) Screening of Bacillus strains as potential probiotics and subsequent confirmation of the in vivo effectiveness of Bacillus subtilis MA139 in pigs. Antonie Van Leeuwenhoek. 90: 139–146.

    Article  CAS  PubMed  Google Scholar 

  10. Boyadzhieva, I. P., M. Atanasova, and E. Emanuilova (2010) A novel, thermostable manganese-containing superoxide dismutase from Bacillus licheniformis. Biotechnol. Lett. 32: 1893–1896.

    Article  CAS  PubMed  Google Scholar 

  11. Lacroix, C. and S. Yildirim (2007) Fermentation technologies for the production of probiotics with high viability and functionality. Curr. Opin. Biotechnol. 18: 176–183.

    Article  CAS  PubMed  Google Scholar 

  12. Parekh, S., V. A. Vinci, and R. J. Strobel (2000) Improvement of microbial strains and fermentation processes. Appl. Microbiol. Biotechnol. 54: 287–301.

    Article  CAS  PubMed  Google Scholar 

  13. Meng, X., Q. Wu, L. Wang, D. Wang, L. Chen, and Y. Xu (2015) Improving flavor metabolism of Saccharomyces cerevisiae by mixed culture with Bacillus licheniformis for Chinese Maotai-flavor liquor making. J. Ind. Microbiol. Biotechnol. 42: 1601–1608.

    Article  CAS  PubMed  Google Scholar 

  14. Liu, C., X. T. Lv, W. X. Zhu, H. Y. Qu, Y. X. Gao, and B. Y. Guo (2013) Enantioselective bioaccumulation of diniconazole in Tenebrio molitor larvae. Chiral. 25: 917–922.

    Article  CAS  Google Scholar 

  15. Gulevsky, A. K., L. I. Relina, and Y. A. Grishchenkova (2006) Variations of the antioxidant system during development of the cold-tolerant beetle, Tenebrio molitor. Cryo. Lett. 27: 283–290.

    CAS  Google Scholar 

  16. Baruzzi, F., P. Poltronieri, G. M. Quero, M. Morea, and L. Morelli (2011) An in vitro protocol for direct isolation of potential probiotic lactobacilli from raw bovine milk and traditional fermented milks. Appl. Microbiol. Biotechnol. 90: 331–342.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, F., X. Y. Li, H. J. Park, and M. Zhao (2013) Effect of microencapsulation methods on the survival of freeze-dried Bifidobacterium bifidum. J. Microencapsul. 30: 511–518.

    Article  CAS  PubMed  Google Scholar 

  18. Trabelsi, I., W. Bejar, D. Ayadi, H. Chouayekh, R. Kammoun, and S. Bejar (2013) Encapsulation in alginate and alginate coated-chitosan improved the survival of newly probiotic in oxgall and gastric juice. Int. J. Biol. Macromol. 61: 36–42.

    Article  CAS  PubMed  Google Scholar 

  19. Ortakci, F. and S. Sert (2012) Stability of free and encapsulated Lactobacillus acidophilus ATCC 4356 in yogurt and in an artificial human gastric digestion system. J. Dairy Sci. 95: 6918–6925.

    Article  CAS  PubMed  Google Scholar 

  20. Awolu, O. O., O. S. Omoba, O. Olawoye, and M. Dairo (2017) Optimization of production and quality evaluation of maizebased snack supplemented with soybean and tiger-nut (Cyperus esculenta) flour. Food Sci. Nutr. 5: 3–13.

    Article  CAS  PubMed  Google Scholar 

  21. Raji, A. O., R. Akinoso, and M. O. Raji (2016) Effect of freezethaw cycles on the nutritional quality of some selected Nigerian soups. Food Sci. Nutr. 4: 163–180.

    Article  CAS  PubMed  Google Scholar 

  22. Qiu, C., P. Shi, S. Xiao, and L. Sun (2017) Effects of pH and substrate concentrations on dark fermentative biohydrogen production from xylose by extreme thermophilic mixed culture. World J. Microbiol. Biotechnol. 33: 7.

    Article  CAS  PubMed  Google Scholar 

  23. Cinque, B., C. La Torre, F. Lombardi, P. Palumbo, Z. Evtoski, and S. J. Santini (2017) VSL#3 probiotic differently influence IEC-6 intestinal epithelial cell status and function. J. Cell Physiol. 232: 3530–3539.

    Article  CAS  PubMed  Google Scholar 

  24. Martin Del Campo, M., R. M. Camacho, J. C. Mateos-Diaz, M. Muller-Santos, J. Cordova, and J. A. Rodriguez (2015) Solidstate fermentation as a potential technique for esterase/lipase production by halophilic archaea. Extremophil. 19: 1121–1132.

    Article  CAS  Google Scholar 

  25. Zhang, Y. R., H. R. Xiong, and X. H. Guo (2014) Enhanced viability of Lactobacillus reuteri for probiotics production in mixed solid-state fermentation in the presence of Bacillus subtilis. Folia Microbiol. 59: 31–36.

    Article  CAS  Google Scholar 

  26. Chatzifragkou, A., S. Papanikolaou, N. Kopsahelis, V. Kachrimanidou, M. P. Dorado, and A. A. Koutinas (2014) Biorefinery development through utilization of biodiesel industry by-products as sole fermentation feedstock for 1,3-propanediol production. Bioresour. Technol. 159: 167–175.

    Article  CAS  PubMed  Google Scholar 

  27. Gueimonde, M. and B. Sanchez (2012) Enhancing probiotic stability in industrial processes. Microb. Ecol. Health Dis. 23.

    Google Scholar 

  28. Forkus, B., S. Ritter, M. Vlysidis, K. Geldart, and Y. N. Kaznessis (2017) Antimicrobial probiotics reduce salmonella enterica in turkey gastrointestinal tracts. Sci. Rep. 7: 40695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhu, J. Y., S. Z. Ze, D. W. Stanley, and B. Yang (2014) Parasitization by Scleroderma guani influences expression of superoxide dismutase genes in Tenebrio molitor. Arch. Insect Biochem. Physiol. 87: 40–52.

    Article  CAS  PubMed  Google Scholar 

  30. Dhama, K., S. K. Latheef, A. K. Munjal, R. Khandia, H. Abdul Samad, and H. M. Iqbal (2016) Probiotics in curing allergic and inflammatory Conditions - research progress and futuristic vision. Recent Pat. Inflamm. Allergy Drug Discov. 10.

    Google Scholar 

  31. Stefano, G. B., J. Samuel, and R. M. Kream (2017) Antibiotics may trigger mitochondrial dysfunction inducing psychiatric disorders. Med. Sci. Monit. 23: 101–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiumei Shi.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, J., Zhang, F., Peng, Y. et al. Mixed culture of probiotics on a solid-state medium: An efficient method to produce an affordable probiotic feed additive. Biotechnol Bioproc E 22, 758–766 (2017). https://doi.org/10.1007/s12257-017-0038-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-017-0038-y

Keywords

Navigation