Skip to main content
Log in

Fabrication of silver ion exchanged zeolite using scoria and its antibacterial activity

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

In this study, we examined the antibacterial activity of silver ion exchanged zeolite synthesized from Cheju Scoria. We synthesized zeolite in various NaOH concentrations, but zeolite synthesized in 4 M NaOH was most similar to type A zeolite. Using the synthesized zeolite, we prepared a silver ion exchanged zeolite for studies of antibacterial activity. Antibacterial tests using agar cultures of Escherichia coli (E. coli), with silver ion exchanged zeolite showed a zone of inhibition colonies bacteria did not grow near silver ion exchanged zeolite. Furthermore, spectrophotometry demonstrated a significantly low absorbance of E. coli culture mediums when silver ion exchanged zeolite was included indicating that E. coli propagation was prevented. Through results of these experiments, we conclude that synthesized products with sodalite crystal can be synthesized from Scoria, and these are suitable to produce silver ion exchanged zeolite with antibacterial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ravelin, J. (1869) Chemistry of vegetation. Sci. Nat. 11: 93–102.

    Google Scholar 

  2. Woodward, R. L. (1963) Review of the bactericidal effectiveness of silver. J. Am. Water Works Assoc. 55: 881–886.

    Google Scholar 

  3. Dibrov, P., J. Dzioba, K. K. Gosink, and C. C. Hase (2002) Chemiosmotic mechanism of antimicrobial activity of Ag(+) in Vibrio cholerae. Antimicrob. Agents Chemo. 46: 2668–2670.

    Article  CAS  Google Scholar 

  4. Feng, Q. L., J. Wu, G. O. F. Z. Chen, T. N. Kim, and J. O. Kim (2002) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mat. Res. 52: 662–668.

    Article  Google Scholar 

  5. Richards, R. M. (1981) Antimicrobial action of silver nitrate. Microbios. 31: 83–91.

    CAS  Google Scholar 

  6. Russell, A. D. and W. B. Hugo (1994) Antimicrobial activity and action of silver. Prog. Med. Chem. 31: 351–370.

    Article  CAS  Google Scholar 

  7. Kim, T. N., Q. L. Feng, J. O. Kim, J. Wu, H. Wang, G. C. Chen, and F. Z. Cui (1998) Antimicrobial effects of metal ions (Ag+, Cu2+, Zn2+) in hydroxyapatite. J. Matee. Sci. Mater. Med. 9: 129–134.

    Article  Google Scholar 

  8. Kim, Y. J., T. N. Kim, S. B. Kim, S. B. Cho, K. J. Cho, and T. H. Lee (2001). Antimicrobial effect of metal ions substitution to HAP and zeolite. Kor. J. Mater. Res. 11: 120–125.

    CAS  Google Scholar 

  9. Viertelhaus, M., A. L. Taylor, L. Kloo, I. Gameson, and P. A. Anderson (2006) Silver nitrate in silver zeolite A: Three-dimensional incommensurate guest ordering in a zeolite framework. Dalton Transact. 19: 2368–2373.

    Article  Google Scholar 

  10. Ahmad, M. B., K. Shameli, M. Darroudi, W. M. Z. W. Yunus, N. A. Ibrahim, A. A. Hamid, and M. Zargar (2009) Antibacterial activity of silver/clay/chitosan bionanocomposites. Res. J. Biol. Sci. 4: 1156–1161.

    Google Scholar 

  11. Shameli, K., M. B. Ahmad, W. M. Z. W. Yunus, N. A. Ibrahim, Y. Gharayebi, and S. Sedaghat (2010) Synthesis of silver/montmorillonite nanocomposites using gamma-irradiation. Int. J. Nanomed. 5: 1067–1077.

    Article  CAS  Google Scholar 

  12. Pal, S., V. K. Tak, and J. M. Song (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microb. 73: 1712–1720.

    Article  CAS  Google Scholar 

  13. Lim, J. S. and G. Lim (2006) Characteristics and applications technology of zeolite. Neaha, Korea.

    Google Scholar 

  14. Yoon, K. B. (2004) Zeolite. Physics & High Technology. 13: 2–11.

    Google Scholar 

  15. Landeen, L. K., M. T. Yahya, and C. P. Gerba (1989) Efficacy of copper and silver ions and reduced levels of free chlorine in inactivation of Legionella-Pneumophila. Appl. Environ. Microb. 55: 3045–3050.

    CAS  Google Scholar 

  16. Liau, S. Y., D. C. Read, W. J. Pugh, and J. R. Furr (1997) Russell AD. Interaction of silver nitrate with readily identifiable groups: Relationship to the antibacterial action of silver ions. Lett. Appl. Microbiol. 25: 279–283.

    Article  CAS  Google Scholar 

  17. Davies, R. L. and S. F. Etris (1997) The development and functions of silver in water purification and disease control. Catal. Today. 36: 107–114.

    Article  CAS  Google Scholar 

  18. Holt, K. B. and A. J. Bard (2005) Interaction of silver(I) ions with the respiratory chain of Escherichia coli: An electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag. Biochem. -Us. 44: 13214–13223.

    Article  CAS  Google Scholar 

  19. Park, H. J., J. Y. Kim, J. Kim, J. H. Lee, J. S. Hahn, M. B. Gu, and J. Yoon (2009) Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity. Water Res. 43: 1027–1032.

    Article  CAS  Google Scholar 

  20. Arakawa, H, R. Ahmad, M. Naoui, and H. A. Tajmir-Riahi (2000) A comparative study of calf thymus DNA binding to Cr(III) and Cr(VI) ions -Evidence for the guanine N-7-chromium-phosphate chelate formation. J. Biol. Chem. 275: 10150–10153.

    Article  CAS  Google Scholar 

  21. Izatt, R. M., J. J. Christen, and J. H. Rytting (1971) Sites and thermodynamic quantities associated with proton and metal ion interaction with ribonucleic acid, deoxyribonucleic acid, and their constituent bases, nucleosides, and nucleotides. Chem. Rev. 71: 439–481

    Article  CAS  Google Scholar 

  22. Shameli, K., M. Bin Ahmad, M. Zargar, W. M. Yunus, N. A. Ibrahim, P. Shabanzadeh, and M. G. Moghaddam (2011) Synthesis and characterization of silver/montmorillonite/chitosan bionanocomposites by chemical reduction method and their antibacterial activity. Int. J. Nanomed. 6: 271–284.

    Article  CAS  Google Scholar 

  23. Kwakye-Awuah, B., C. Williams, M. A. Kenward, and I. Radecka (2008) Antimicrobial action and efficiency of silverloaded zeolite X. J. Appl. Microbiol. 104: 1516–1524.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gi-Beum Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.H., Choi, KM. & Kim, GB. Fabrication of silver ion exchanged zeolite using scoria and its antibacterial activity. Biotechnol Bioproc E 21, 646–652 (2016). https://doi.org/10.1007/s12257-015-0766-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-015-0766-9

Keywords

Navigation