Skip to main content
Log in

Semi-solid state fermentation of food waste for production of Bacillus thuringiensis biopesticide

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

In this study, Bacillus thuringiensis (Bt) biopesticide was produced through different fermentation processes using food waste with different water contents. The semi-solid state sample with 75% water content presented the highest δ-endotoxin efficiency of 862 μg/mL. δ-endotoxin efficiency increased by 30.2% from that of the solid-state sample (50% water content) and 73.8% from that of the submerged sample (99% water content). Results confirmed that semi-solid state fermentation presents considerable advantages compared with other fermentation types (solid-state and submerged). The timing adjustment of pH and recycling fermentation effectively counteracted the inhibition of pH and product, thereby increasing δ- endotoxin efficiency to 1,648 and 2,478 μg/mL (accumulated value of all four fermentation loops), respectively. A δ- endotoxin slow-release formulation using polylactic acid as the carrier was also developed to effectively promote the stability of Bt biopesticide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Holmberg, A. and R. Sievanen (1980) Fermentation of Bacillus thuringiensis for exotoxin production: Process analysis study. Biotechnol. Bioeng. 22: 1707–1724.

    Article  CAS  Google Scholar 

  2. Brar, S. K., M. Verma, R. D. Tyagi, J. R. Valéro, and R. Y. Surampalli (2007) Bacillus thuringiensis fermentation of hydrolyzed sludge -Rheology and formulation studies. Chemospher. 67: 674–683.

    Article  CAS  Google Scholar 

  3. Vimala Devi, P. S., T. Ravinder, and C. Jaidev (2005) Cost-effective production of Bacillus thuringiensis by solid-state fermentation. J. Invertebr. Pathol. 88: 163–168.

    Article  Google Scholar 

  4. El-Bendary, M. A. (2010) Production of mosquitocidal Bacillus sphaericus by solid state fermentation using agricultural wastes. World J. Microbiol. Biotechnol. 26: 153–159.

    Article  CAS  Google Scholar 

  5. Prabakaran, G., S. L. Hoti, A. M. Manonmani, and K. Balaraman (2008) Coconut water as a cheap source for the production of d endotoxin of Bacillus thuringiensis var. israelensis, a mosquito control agent. Acta Trop. 105: 35–38.

    Article  CAS  Google Scholar 

  6. Poopathi, S. and S. Abidha (2007) Use of feather-based culture media for the production of mosquitocidal bacteria. Biocontrol. 43: 49–55.

    Google Scholar 

  7. Wang, X. Q., Q. H. Wang, H. Z. Ma, and W. Yin (2009) Lactic acid fermentation of food waste using integrated glucoamylase production. J. Chem. Technol. Biotechnol. 84: 139–143.

    Article  CAS  Google Scholar 

  8. Ma, H. Z., Q. H. Wang, D. Y. Qian, L. J. Gong, and W. Y. Zhang (2009) The utilization of acid-tolerant bacteria on ethanol production from kitchen garbage. Renew. Energ. 34: 1466–1470.

    Article  Google Scholar 

  9. Zhang, W. W., L. N. Qiu, A. J. Gong, Y. Q. Cao, and B. Wang (2013) Solid-state fermentation of food waste for production of Bacillus thuringiensis-based bio-pesticide. Bioresour. 8: 1124–1135.

    Google Scholar 

  10. Zhang, W. Y., H. Z. Ma, Q. H. Wang, and J. L. Xia (2012) Research on the adoption of lactic acid bacteria in food waste storage and ethanol production. Int. J. Green Energy. 9: 456–466.

    Article  CAS  Google Scholar 

  11. Velioğlu, Z. and R. Öztürk Ürek (2015) Biosurfactant production by Pleurotus ostreatus in submerged and solid-state fermentation systems. Turk. J. Biol. 39: 160–166.

    Article  Google Scholar 

  12. Rajan, A. and A. J. Nair (2011) A comparative study on alkaline lipase production by a newly isolated Aspergillus fumigatus MTCC 9657 in submerged and solid-state fermentation using economically and industrially feasible substrate. Turk. J. Biol. 35: 569–574.

    CAS  Google Scholar 

  13. Zhang, B. B., L. P. Lu, and G. R. Xu (2015) Why solid-state fermentation is more advantageous over submerged fermentation for converting high concentration of glycerol into Monacolin K by Monascus purpureus 9901: A mechanistic study. J. Biotechnol. 206: 60–65.

    Article  CAS  Google Scholar 

  14. Singhania, R. R., A. K. Patel, C. R. Soccol, and A. Pandey (2009) Recent advances in solid-state fermentation. Biochem. Eng. J. 44: 13–18.

    Article  CAS  Google Scholar 

  15. Zhuang, L., S. G. Zhou, Y. Q. Wang, Z. Liu, and R. X. Xu (2011) Rongxian Cost-effective production of Bacillus thuringiensis biopesticides by solid-state fermentation using wastewater sludge: Effects of heavy metals. Bioresour. Technol. 102: 4820–4826.

    Article  CAS  Google Scholar 

  16. Machadoa, I., J. A. Teixeira, and S. Rodríguez-Couto (2013) Semi-solid-state fermentation: A promising alternative for neomycin production by the actinomycete Streptomyces fradiae. J. Biotechnol. 165:195.

    Article  Google Scholar 

  17. Patil, S. R., S. Amena, A. Vikas, P. Rahul, K. Jagadeesh, and K. Praveen (2013) Utilization of silkworm litter and pupal waste-an eco-friendly approach for mass production of Bacillus thuringiensis. Bioresour. Technol. 131: 545–547.

    Article  CAS  Google Scholar 

  18. Vu, K. D., R. D. Tyagi, R. Y. Surampalli, and J. R. Valéro (2012) Mathematical relationships between spore concentrations, d-endotoxin levels, and entomotoxicity of Bacillus thuringiensis preparations produced in different fermentation media. Bioresour. Technol. 123: 303–311.

    Article  CAS  Google Scholar 

  19. Yezza, A., R. D. Tyagi, J. R. Valéro, and R. Y. Surampalli (2006) Bioconversion of industrial wastewater and wastewater sludge into Bacillus thuringiensis based biopesticides in pilot fermentor. Bioresour. Technol. 97: 1850–1857.

    Article  CAS  Google Scholar 

  20. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantitites of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  CAS  Google Scholar 

  21. Economou, Ch. N., A. Makri, G. Aggelis, S. Pavlou, and D. V. Vayenas (2010) Semi-solid state fermentation of sweet sorghum for the biotechnological production of single cell oil. Bioresour. Technol. 101: 1385–1388.

    Article  CAS  Google Scholar 

  22. Naveena, B. J., M. Altaf, K. Bhadrayya, and G. Reddy (2004) Production of L(+) lactic acid by Lactobacillus amylophilus GV6 in semi-solid state fermentation using wheat bran. Food Technol. Biotechnol. 42: 147–152.

    CAS  Google Scholar 

  23. Lachhab, K., R. D. Tyagi, and J. R. Valéro (2001) Production of Bacillus thuringiensis biopesticides using wastewater sludge as a raw material: Effect of inoculum and sludge solids concentration. Proc. Biochem. 37: 197–208.

    Article  CAS  Google Scholar 

  24. Vidyarthi, A. S., R. D. Tyagi, J. R. Valéro, and R. Y. Surampalli (2002) Studies on the production of B. thuringiensis based biopesticides using wastewater sludge as a raw material. Water Res. 36: 4850–4860.

    Article  CAS  Google Scholar 

  25. Burges, H. D. and N. W. Hussey (1977) Microbiol control of insects and mites (Chinese translation). pp.168–185. Science Press, BJ, China.

    Google Scholar 

  26. Prabakaran, G., S. L. Hoti, A. M. Manonmani, and K. Balaraman (2008) Coconut water as a cheap source for the production of endotoxin of Bacillus thuringiensis var. israelensis, a mosquito control agent. Acta Trop. 105: 35–38.

    Article  CAS  Google Scholar 

  27. Benoit, T. G., G. R. Wilson, and C. L. Baugh (1990) Fermentation during growth and sporulation of Bacillus thuringiensis HD-1. Lett. Appl. Microbiol. l0: 1518.

    Google Scholar 

  28. Li, E. and A. A. Yousten (1975) Metalloprotease from Bacillus thuringiensis. Appl. Microbiol. 30: 354–361.

    CAS  Google Scholar 

  29. Wu, Y. T., M. Feng, W. W. Ding, X. Y. Tang, Y. H. Zhong, and Z. Y. Xiao (2008) Preparation of vanillin by bioconversion in a silicon rubber membrane bioreactor. Biochem. Eng. J. 41: 193–197.

    Article  CAS  Google Scholar 

  30. Wang, Q. H., X. M. Wang, X. Q. Wang, H. Z. Ma, N. Q. Ren (2005) Bioconversion of kitchen garbage to lactic acid by two wild strains of Lactobacillus Species. J. Environ. Sci. Heal. 40: 1951–1962.

    Article  CAS  Google Scholar 

  31. Ghribi, D., N. Zouari, W. Trigui, and S. Jaoua (2007) Use of sea water as salts source in starch-and soya bean-based media, for the production of Bacillus thuringiensis bioinsecticides. Proc. Biochem. 42: 374–378.

    Article  CAS  Google Scholar 

  32. Wang, Q. H., J. Y. Narita, W. M. Xie, Y. Ohsumi, K. Kusano, Y. Shirai, and H. I. Ogawa (2002) Effects of anaerobic/aerobic incubation and storage temperature on preservation and deodorization of kitchen garbage. Bioresour. Technol. 84: 213–220.

    Article  CAS  Google Scholar 

  33. Devisetty, B. N., Y. Wang, and P. Sudershan (1998) Formulation and delivery systems for enhanced and extended Activity of biopesticides. Pesticide Formulations an Application Systems: 18th volume, ASTM STP 1347, American Society for Testing and Materials.

    Book  Google Scholar 

  34. Zhou, X. Y. (2004) Study on the spray drying technology of Bacillus thuringiensis and the formulation of insecticidal protein adsorption on nano-materials. Ph.D. Thesis. Huazhong Agricultural University, Wuhan, China.

    Google Scholar 

  35. Prabakaran, G., V. Padmanabhan, and K. Balaraman, (2001) Development of a self floating slow release formulation of Bacillus thuringiensis var. israelensis and its larvicidal activity. Indian J. Exp. Biol. 39: 82–84.

    CAS  Google Scholar 

  36. Navon, A., S. Keren, S. Levski, A. Grinstein, and Y. Riven (1997) Granular feeding baits based on bacillus thuringiensis products for the control of lepidopterous pests. Phytoparasit. 25: S101–S110.

    Article  Google Scholar 

  37. Tamez, G. P., F. R. Castro, R. H. Medranno, M. R. Mcguire, L. J. G. Galanwong, and O. H. A. Luna (1998) Laboratory and field comparisons of strains of Bacillus thuringiensis foractivity against noctuid larvae using granular formulations (Lepidoptera). J. Econ. Entomol. 91: 86–93.

    Article  Google Scholar 

  38. Román, M. S. S., M. J. Holgado, B. Salinas, and V. Rives (2013) Drug release from layered double hydroxides and from their polylactic acid (PLA) nanocomposites. Appl. Clay. Sci. 71: 1–7.

    Article  Google Scholar 

  39. Ying, L. W., S. Y. Fong, and L. C. Hsuan (2013) The preparation of multi-walled carbon nanotube/poly (lactic acid) composites with excellent conductivity. J. Taiwan Institute Chem. Eng. 44: 489–496.

    Article  Google Scholar 

  40. Pavanettof, F., B. Conti, and I. Genta (1992) Solvent evaporation, solvent extraction and spray drying for polylactide microsphere preparation. Int. J. Pharm. 84: 151–159.

    Article  Google Scholar 

  41. Soriano, I., M. Llabres, and C. Evora (1995) Release control of albumin from polylactic acid microspheres. Int. J. Pharmaceut. 125: 223–230.

    Article  CAS  Google Scholar 

  42. Zhao, J. and R. M. Wilkins (2005) Low Molecular weight polylactic acid as a matrix for the delayed release of pesticides. J. Agric. Food Chem. 53: 4076–4082.

    Article  CAS  Google Scholar 

  43. Jin, L., X. Zeng, M. Liu, and N. Y. He, (2013) Chitosan/polylactic acid/tripolyphosphate nanocapsules for encapsulation of water-insoluble drugs: In vitro drug release and cytotoxicity. Sci. Adv. Mater. 5: 2053–2057.

    Article  CAS  Google Scholar 

  44. Schliephake, H., H. A. Weich, J. Schulz, and R. Gruber (2007) In vitro characterization of a slow release system of polylactic acid and rhBMP2. J. Biomed. Mater. Res. A. 83: 455–462.

    Article  CAS  Google Scholar 

  45. Park, J. Y. and I. H. Lee (2011) Controlled release of ketoprofen from electrospun porous polylactic acid (PLA) nanofibers. J. Polym. Res. 18:1287–1291.

    Article  CAS  Google Scholar 

  46. Ketseoglou, I. and G. Bouwer (2013) Optimization of photobioreactor growth conditions for a cyanobacterium expressing mosquitocidal Bacillus thuringiensis Cry proteins. J. Biotechnol. 167: 64–71.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juejun Yao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Zou, H., Jiang, L. et al. Semi-solid state fermentation of food waste for production of Bacillus thuringiensis biopesticide. Biotechnol Bioproc E 20, 1123–1132 (2015). https://doi.org/10.1007/s12257-015-0347-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-015-0347-y

Keywords

Navigation