Skip to main content
Log in

rational design and directed evolution of CYP102A1 (BM3) for regio-specific hydroxylation of isoflavone

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Isoflavonoids are a class of polycyclic aromatic hydrocarbon compounds originating from plants as secondary metabolites. Their oxidative metabolites such as ortho dihydroxyisoflavones (ODIs), where the ortho carbons of the hydroxyl groups are hydroxylated, have been reported to have a remarkably high antioxidant effect. Here, we report enzyme engineering of the cytochrome P450 enzyme CYP102A1 (BM3) for the synthesis of ODIs from isoflavonoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, Q., X. Ge, X. Tian, Y. Zhang, J. Zhang, and P. Zhang (2013) Soy isoflavone: The multipurpose phytochemical (Review). Biomed. Rep. 1: 697–701.

    CAS  Google Scholar 

  2. Amit N. Shinde, N. M. and D. P. Fulzele (2009) Enhanced production of phytoestrogenic isoflavones from hairy root cultures of psoralea corylifolia l. Using elicitation and precursor feeding. Biotechnol. Bioproc. Eng. 14: 288–294.

    Article  Google Scholar 

  3. Liu, J., S. K. Chang, and D. Wiesenborn (2005) Antioxidant properties of soybean isoflavone extract and tofu in vitro and in vivo. J. Agricult. Food Chem. 53: 2333–2340.

    Article  CAS  Google Scholar 

  4. Rimbach, G., S. De Pascual-Teresa, B. A. Ewins, S. Matsugo, Y. Uchida, A. M. Minihane, R. Turner, K. VafeiAdou, and P. D. Weinberg (2003) Antioxidant and free radical scavenging activity of isoflavone metabolites. Xenobiotica 33: 913–925.

    Article  CAS  Google Scholar 

  5. Park, J. S., J. S. Jung, Y. H. Jeong, J. W. Hyun, T. K. Le, D. H. Kim, E. C. Choi, and H. S. Kim (2011) Antioxidant mechanism of isoflavone metabolites in hydrogen peroxide-stimulated rat primary astrocytes: Critical role of hemeoxygenase-1 and NQO1 expression. J. Neurochem. 119: 909–919.

    Article  CAS  Google Scholar 

  6. Lee, D. E., K. W. Lee, S. Byun, S. K. Jung, N. Song, S. H. Lim, Y. S. Heo, J. E. Kim, N. J. Kang, B. Y. Kim, G. T. Bowden, A. M. Bode, H. J. Lee, and Z. Dong (2011) 7,3',4'-Trihydroxyisoflavone, a metabolite of the soy isoflavone daidzein, suppresses ultraviolet B-induced skin cancer by targeting Cot and MKK4. J. Biol. Chem. 286: 14246–14256.

    Article  CAS  Google Scholar 

  7. Park, J. S., M. S. Woo, D. H. Kim, J. W. Hyun, W. K. Kim, J. C. Lee, and H. S. Kim (2007) Anti-inflammatory mechanisms of isoflavone metabolites in lipopolysaccharide-stimulated microglial cells. J. Pharmacol. Exp. Therapeutics 320: 1237–1245.

    Article  CAS  Google Scholar 

  8. Bernhardt, R. (2006) Cytochromes P450 as versatile biocatalysts. J. Biotechnol. 124: 128–145.

    Article  CAS  Google Scholar 

  9. Bernhardt, R. and V. B. Urlacher (2014) Cytochromes P450 as promising catalysts for biotechnological application: chances and limitations. Appl. Microbiol. Biotechnol. 98: 6185–6203.

    Article  CAS  Google Scholar 

  10. Ringle, M., Y. Khatri, J. Zapp, F. Hannemann, and R. Bernhardt (2013) Application of a new versatile electron transfer system for cytochrome P450-based Escherichia coli whole-cell bioconversions. Appl. Microbiol. Biotechnol. 97: 7741–7754.

    Article  CAS  Google Scholar 

  11. Munro, A. W., H. M. Girvan, and K. J. McLean (2007) Cytochrome P450—redox partner fusion enzymes. Biochimica et Biophysica Acta 1770: 345–359.

    Article  CAS  Google Scholar 

  12. Munro, A. W. and D. Leys (2012) Special issue: Cytochrome P450 structure and function: introduction. FEBS J. 279: 1515.

    Article  CAS  Google Scholar 

  13. McLean, K. J., M. Sabri, K. R. Marshall, R. J. Lawson, D. G. Lewis, D. Clift, P. R. Balding, A. J. Dunford, A. J. Warman, J. P. McVey, A. M. Quinn, M. J. Sutcliffe, N. S. Scrutton, and A. W. Munro (2005) Biodiversity of cytochrome P450 redox systems. Biochem. Soc. Trans. 33: 796–801.

    Article  CAS  Google Scholar 

  14. De Mot, R. and A. H. Parret (2002) A novel class of self-sufficient cytochrome P450 monooxygenases in prokaryotes. Trends Microbiol. 10: 502–508.

    Article  Google Scholar 

  15. Choi, K. Y., E. Jung, D. H. Jung, B. P. Pandey, H. Yun, H. Y. Park, R. J. Kazlauskas, and B. G. Kim (2012) Cloning, expression and characterization of CYP102D1, a self-sufficient P450 monooxygenase from Streptomyces avermitilis. The FEBS J. 279: 1650–1662.

    Article  CAS  Google Scholar 

  16. Na-Rae Lee, J. W. Y. and Jin-Byung Park (2011) Effect of lipopolysaccharide mutation on oxygenation of linoleic acid by recombinant Escherichia coli expressing CYP102A2 of Bacillus subtilis. Biotechnol. Bioproc. Eng. 16: 7–12.

    Article  Google Scholar 

  17. Whitehouse, C. J., S. G. Bell, and L. L. Wong (2012) P450(BM3) (CYP102A1): Connecting the dots. Chem. Society Rev. 41: 1218–1260.

    Article  CAS  Google Scholar 

  18. Budde, M., M. Morr, R. D. Schmid, and V. B. Urlacher (2006) Selective hydroxylation of highly branched fatty acids and their derivatives by CYP102A1 from Bacillus megaterium. ChemBio-Chem 7: 789–794.

    Article  CAS  Google Scholar 

  19. Whitehouse, C. J., W. Yang, J. A. Yorke, H. G. Tufton, L. C. Ogilvie, S. G. Bell, W. Zhou, M. Bartlam, Z. Rao, and L. L. Wong (2011) Structure, electronic properties and catalytic behaviour of an activity-enhancing CYP102A1 (P450(BM3)) variant. Dalton Trans. 40: 10383–10396.

    Article  CAS  Google Scholar 

  20. Whitehouse, C. J., S. G. Bell, W. Yang, J. A. Yorke, C. F. Blanford, A. J. Strong, E. J. Morse, M. Bartlam, Z. Rao, and L. L. Wong (2009) A highly active single-mutation variant of P450BM3 (CYP102A1). ChemBioChem 10: 1654–1656.

    Article  CAS  Google Scholar 

  21. Seifert, A., M. Antonovici, B. Hauer, and J. Pleiss (2011) An efficient route to selective bio-oxidation catalysts: An iterative approach comprising modeling, diversification, and screening, based on CYP102A1. ChemBioChem 12: 1346–1351.

    Article  CAS  Google Scholar 

  22. Damsten, M. C., B. M. van Vugt-Lussenburg, T. Zeldenthuis, J. S. de Vlieger, J. N. Commandeur, and N. P. Vermeulen (2008) Application of drug metabolising mutants of cytochrome P450 BM3 (CYP102A1) as biocatalysts for the generation of reactive metabolites. Chemico-Biol. Interact. 171: 96–107.

    Article  CAS  Google Scholar 

  23. Rea, V., S. Dragovic, J. S. Boerma, F. J. de Kanter, N. P. Vermeulen, and J. N. Commandeur (2011) Role of residue 87 in the activity and regioselectivity of clozapine metabolism by drugmetabolizing CYP102A1 M11H: Application for structural characterization of clozapine GSH conjugates. Drug Metabol. Disposition 39: 2411–2420.

    Article  CAS  Google Scholar 

  24. Vottero, E., V. Rea, J. Lastdrager, M. Honing, N. P. Vermeulen, and J. N. Commandeur (2011) Role of residue 87 in substrate selectivity and regioselectivity of drug-metabolizing cytochrome P450 CYP102A1 M11. J. Biol. Inorganic Chem. 16: 899–912.

    Article  CAS  Google Scholar 

  25. Chen, C. K., T. Shokhireva, R. E. Berry, H. Zhang, and F. A. Walker (2008) The effect of mutation of F87 on the properties of CYP102A1-CYP4C7 chimeras: Altered regiospecificity and substrate selectivity. J. Biol. Inorganic Chem. 13: 813–824.

    Article  CAS  Google Scholar 

  26. Seifert, A., S. Vomund, K. Grohmann, S. Kriening, V. B. Urlacher, S. Laschat, and J. Pleiss (2009) Rational design of a minimal and highly enriched CYP102A1 mutant library with improved regio-, stereo- and chemoselectivity. ChemBioChem 10: 853–861.

    Article  CAS  Google Scholar 

  27. Whitehouse, C. J., W. Yang, J. A. Yorke, B. C. Rowlatt, A. J. Strong, C. F. Blanford, S. G. Bell, M. Bartlam, L. L. Wong, and Z. Rao (2010) Structural basis for the properties of two single-site proline mutants of CYP102A1 (P450BM3). ChemBioChem 11: 2549–2556.

    Article  CAS  Google Scholar 

  28. Dietrich, M., S. Eiben, C. Asta, T. A. Do, J. Pleiss, and V. B. Urlacher (2008) Cloning, expression and characterisation of CYP102A7, a self-sufficient P450 monooxygenase from Bacillus licheniformis. Appl. Microbiol. Biotechnol. 79: 931–940.

    Article  CAS  Google Scholar 

  29. Choi, K. Y., E. Jung, H. Yun, Y. H. Yang, and B. G. Kim (2014) Engineering class I cytochrome P450 by gene fusion with NADPH-dependent reductase and S. avermitilis host development for daidzein biotransformation. Appl. Microbiol. Biotechnol. 98: 8191–8200.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kwon-Young Choi or Byung-Gee Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ko, S., Yang, YH., Choi, KY. et al. rational design and directed evolution of CYP102A1 (BM3) for regio-specific hydroxylation of isoflavone. Biotechnol Bioproc E 20, 225–233 (2015). https://doi.org/10.1007/s12257-014-0718-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-014-0718-9

Keywords

Navigation