Skip to main content
Log in

NADH-dependent lactate dehydrogenase from Alcaligenes eutrophus H16 reduces 2-oxoadipate to 2-hydroxyadipate

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Adipic acid is an important monomer for the production of nylon-6,6 polyamide. One novel biological route for the synthesis of adipic acid, which combines the lysine synthetic pathway and glutaconic acid production pathway, has been suggested, but this route has suffered from the lack of an efficient 2-oxoadipate reductase connecting the two pathways or converting 2-oxoadipate to 2-hydroxyadipate. In this study, we report that the lactate dehydrogenase of Alcaligenes eutrophus H16 is a promising catalyst for this reaction. The lactate dehydrogenase gene (Ae-ldhO) was cloned, expressed in Escherichia coli, purified, and characterized. The recombinant enzyme, having a molecular weight of 36.7 kDa, exhibited broad substrate specificity for various 2-oxoacids. NADH was the preferred coenzyme over NADPH for all 2-oxoacids tested. The maximum specific activity of Ae-LdhO on 2-oxoadipate was 454.5 ± 20.1 U/mg protein at pH 7.0 and 30℃. The K m values for 2-oxoadipic acid and NADH were 0.32 ± 0.02 and 0.09 ± 0.002 mM, respectively. The activity of Ae-LdhO was enhanced in the presence of some metal ions, such as Mg2+, Co2+ or Ni2+, whereas it was completely inhibited by Hg2+, Ag+, Cu2+ and DTT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Polen, T., M. Spelberg, and M. Bott (2013) Toward biotechnological production of adipic acid and precursors from biorenewables. J. Biotechnol. 167: 75–84.

    Article  CAS  Google Scholar 

  2. Merchant, R. and L. Consulting (2011) Adipic acid 2011 World Market Outlook and Forecast.

    Google Scholar 

  3. Musser, M. T. (2005) Adipic acid. ULLMANN’S Encyclopedia of Industrial Chemistry. pp. 537–548. vol. 1. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

    Google Scholar 

  4. Ince, W. H. (1895) Preparation of adipic acid and some of its derivatives. J. Chem. Soc. Trans. 67: 155–159.

    Article  CAS  Google Scholar 

  5. Usui, Y. and K. Sato (2003) A green method of adipic acid synthesis: Organic solvent- and halide-free oxidation of cycloalkanones with 30% hydrogen peroxide. Green Chem. 5: 373–375.

    Article  CAS  Google Scholar 

  6. Cao, B., A. Geng, and K. C. Loh (2008) Induction of ortho- and meta-cleavage pathways in Pseudomonas in biodegradation of high benzoate concentration: MS identification of catabolic enzymes. Appl. Microbiol. Biotechnol. 81: 99–107.

    Article  CAS  Google Scholar 

  7. Collier, L. S., G. L. Gaines, and E. L. Neidle (1998) Regulation of benzoate degradation in Acinetobacter sp. strain ADP1 by BenM, a LysR-type transcriptional activator. J. Bacteriol. 180: 2493–2501.

    CAS  Google Scholar 

  8. Denef, V. J., J. A. Klappenbach, M. A. Patrauchan, C. Florizone, J. L. Rodrigues, T. V. Tsoi, W. Verstraete, L. D. Eltis, and J. M. Tiedje (2006) Genetic and genomic insights into the role of benzoate-catabolic pathway redundancy in Burkholderia xenovorans LB400. Appl. Environ. Microbiol. 72: 585–595.

    Article  CAS  Google Scholar 

  9. Jeffrey, W. H., S. M. Cuskey, P. J. Chapman, S. Resnick, and R. H. Olsen (1992) Characterization of Pseudomonas putida mutants unable to catabolize benzoate: Cloning and characterization of Pseudomonas genes involved in benzoate catabolism and isolation of a chromosomal DNA fragment able to substitute for xylS in activation of the TOL lower-pathway promoter. J. Bacteriol. 174: 4986–4996.

    CAS  Google Scholar 

  10. Kitagawa, W., K. Miyauchi, E. Masai, and M. Fukuda (2001) Cloning and characterization of benzoate catabolic genes in the gram-positive polychlorinated biphenyl degrader Rhodococcus sp. strain RHA1. J. Bacteriol. 183: 6598–6606.

    Article  CAS  Google Scholar 

  11. McFall, S. M., S. A. Chugani, and A. M. Chakrabarty (1998) Transcriptional activation of the catechol and chlorocatechol operons: Variations on a theme. Gene. 223: 257–267.

    Article  CAS  Google Scholar 

  12. Moreno, R. and F. Rojo (2008) The Target for the Pseudomonas putida Crc global regulator in the benzoate degradation pathway is the benr transcriptional regulator. J. Bacteriol. 190: 1539–1545.

    Article  CAS  Google Scholar 

  13. Neidle, E. L., M. K. Shapiro, and L. N. Ornston (1987) Cloning and expression in Escherichia coli of Acinetobacter calcoaceticus genes for benzoate degradation. J. Bacteriol. 169: 5496–5503.

    CAS  Google Scholar 

  14. Takenaka, S., E. Setyorini, Y. J. Kim, S. Murakami, and K. Aoki (2005) Constitutive synthesis of enzymes involved in 2-aminophenol metabolism and inducible synthesis of enzymes involved in benzoate, p-hydroxybenzoate, and protocatechuate metabolism in Pseudomonas sp. strain AP-3. Biosci. Biotechnol. Biochem. 69: 1033–1035.

    Article  CAS  Google Scholar 

  15. Yoon, Y. H., S. H. Yun, S. H. Park, S. Y. Seol, S. H. Leem, and S. I. Kim (2007) Characterization of a new catechol branch of the beta-ketoadipate pathway induced for benzoate degradation in Acinetobacter lwoffii K24. Biochem. Biophys. Res. Commun. 360: 513–519.

    Article  CAS  Google Scholar 

  16. Zhan, Y., H. Yu, Y. Yan, M. Chen, W. Lu, S. Li, Z. Peng, W. Zhang, S. Ping, J. Wang, and M. Lin (2008) Genes involved in the benzoate catabolic pathway in Acinetobacter calcoaceticus PHEA-2. Curr. Microbiol. 57: 609–614.

    Article  CAS  Google Scholar 

  17. De, G. D. (2010) Bio-adipic acid prepares for entry. pp: 22–23. ICIS Chemical Business. September 27–October 3.

    Google Scholar 

  18. Niu, W., K. M. Draths, and J. W. Frost (2002) Benzene-free synthesis of adipic acid. Biotechnol. Prog. 18: 201–211.

    Article  CAS  Google Scholar 

  19. Thomas, J. M., R. Raja, B. F. Johnson, T. J. O'Connell, G. Sankar, and T. Khimyak (2003) Bimetallic nanocatalysts for the conversion of muconic acid to adipic acid. Chem. Commun. (Camb). 1126–1127.

    Google Scholar 

  20. Parthasarathy, A., A. J. Pierik, J. Kahnt, O. Zelder, and W. Buckel (2011) Substrate specificity of 2-hydroxyglutaryl-CoA dehydratase from Clostridium symbiosum: Toward a bio-based production of adipic acid. Biochem. 50: 3540–3550.

    Article  CAS  Google Scholar 

  21. Steinbuchel, A. and H. G. Schlegel (1983) NAD-linked L(+)-lactate dehydrogenase from the strict aerobe Alcaligenes eutrophus. 1. Purification and properties. Eur. J. Biochem. 130: 321–328.

    Article  CAS  Google Scholar 

  22. Sambrook, J. and D. Russell (2001) Molecular cloning: A Laboratory Manual. 3rd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.

    Google Scholar 

  23. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  CAS  Google Scholar 

  24. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  CAS  Google Scholar 

  25. Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman (1990) Basic local alignment search tool. J. Mol. Biol. 215: 403–410.

    Article  CAS  Google Scholar 

  26. Eswar, N., B. Webb, M. A. Marti-Renom, M. S. Madhusudhan, D. Eramian, M. Y. Shen, U. Pieper, and A. Sali (2007) Comparative protein structure modeling using MODELLER. Curr. Protoc Protein Sci. 15: 5.6.1–5.6.30.

  27. Shen, M. Y. and A. Sali (2006) Statistical potential for assessment and prediction of protein structures. Protein Sci. 15: 2507–2524.

    Article  CAS  Google Scholar 

  28. Laskowski, R. A., M. W. MacArthur, D. S. Moss, and J. M. Thornton (1993) PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26: 283–291.

    Article  CAS  Google Scholar 

  29. Eisenberg, D., R. Luthy, and J. U. Bowie (1997) VERIFY3D: Assessment of protein models with three-dimensional profiles. Methods Enzymol. 277: 396–404.

    Article  CAS  Google Scholar 

  30. Van Der Spoel, D., E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, and H. J. Berendsen (2005) GROMACS: Fast, flexible, and free. J. Comput. Chem. 26: 1701–1718.

    Article  Google Scholar 

  31. Lee, P., S. Raj, S. Zhou, S. Ashok, S. Edwardraja, and S. Park (2014) 3-hydroxyisobutyrate dehydrogenase-I from Pseudomonas denitrificans ATCC 13867 degrades 3-hydroxypropionic acid. Biotechnol. Bioproc. Eng. 19: 1–7.

    Article  CAS  Google Scholar 

  32. Sokalingam, S., B. Madan, G. Raghunathan, and S.-G. Lee (2013) In silico study on the effect of surface lysines and arginines on the electrostatic interactions and protein stability. Biotechnol. Bioproc. Eng. 18: 18–26.

    Article  CAS  Google Scholar 

  33. Morris, G. M., R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell, and A. J. Olson (2009) AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 30: 2785–2791.

    Article  CAS  Google Scholar 

  34. Berman, H. M., J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, and P. E. Bourne (2000) The protein data bank. Nucleic Acids Res. 28: 235–242.

    Article  CAS  Google Scholar 

  35. Porter, C. T., G. J. Bartlett, and J. M. Thornton (2004) The catalytic site Atlas: A resource of catalytic sites and residues identified in enzymes using structural data. Nucleic Acids Res. 32: 129–133.

    Article  Google Scholar 

  36. Raj, S., C. Rathnasingh, W.-C. Jung, E. Selvakumar, and S. Park (2010) A Novel NAD+-dependent aldehyde dehydrogenase encoded by the puuC gene of Klebsiella pneumoniae DSM 2026 that utilizes 3-hydroxypropionaldehyde as a substrate. Biotechnol. Bioproc. Eng. 15: 131–138.

    Article  CAS  Google Scholar 

  37. Jo, J. E., S. Mohan Raj, C. Rathnasingh, E. Selvakumar, W. C. Jung, and S. Park (2008) Cloning, expression, and characterization of an aldehyde dehydrogenase from Escherichia coli K-12 that utilizes 3-Hydroxypropionaldehyde as a substrate. Appl. Microbiol. Biotechnol. 81: 51–60.

    Article  CAS  Google Scholar 

  38. Berrios-Rivera, S. J., G. N. Bennett, and K. Y. San (2002) Metabolic engineering of Escherichia coli: Increase of NADH availability by overexpressing an NAD(+)-dependent formate dehydrogenase. Metab. Eng. 4: 217–229.

    Article  CAS  Google Scholar 

  39. Schwartz, E., U. Gerischer, and B. Friedrich (1998) Transcriptional regulation of Alcaligenes eutrophus hydrogenase genes. J. Bacteriol. 180: 3197–3204.

    CAS  Google Scholar 

  40. Garvie, E. I. (1980) Bacterial lactate dehydrogenases. Microbiol. Rev. 44: 106–139.

    CAS  Google Scholar 

  41. Kabsch, W. and C. Sander (1983) Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopoly. 22: 2577–2637.

    Article  CAS  Google Scholar 

  42. Rossmann, M. G. and P. Argos (1976) Exploring structural homology of proteins. J. Mol. Biol. 105: 75–95.

    Article  CAS  Google Scholar 

  43. Eriksson, M., U. Uhlin, S. Ramaswamy, M. Ekberg, K. Regnstrom, B. M. Sjoberg, and H. Eklund (1997) Binding of allosteric effectors to ribonucleotide reductase protein R1: Reduction of active-site cysteines promotes substrate binding. Structure. 5: 1077–1092.

    Article  CAS  Google Scholar 

  44. Forouhar, F., I. Lee, J. Benach, K. Kulkarni, R. Xiao, T. B. Acton, G. T. Montelione, and L. Tong (2004) A novel NAD-binding protein revealed by the crystal structure of 2,3-diketo-L-gulonate reductase (YiaK). J. Biol. Chem. 279: 13148–13155.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunghoon Park.

Additional information

These two author’s contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Ashok, S., Seol, E. et al. NADH-dependent lactate dehydrogenase from Alcaligenes eutrophus H16 reduces 2-oxoadipate to 2-hydroxyadipate. Biotechnol Bioproc E 19, 1048–1057 (2014). https://doi.org/10.1007/s12257-014-0381-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-014-0381-1

Keywords

Navigation